Quantified hole concentration in AlGaN nanowires for high-performance ultraviolet emitters.

p-Type doping in wide bandgap and new classes of ultra-wide bandgap materials has long been a scientific and engineering problem. The challenges arise from the large activation energy of dopants and high densities of dislocations in materials. We report here, a significantly enhanced p-type conduction using high-quality AlGaN nanowires. For the first time, the hole concentration in Mg-doped AlGaN nanowires is quantified. The incorporation of Mg into AlGaN was verified by correlation with photoluminescence and Raman measurements. The open-circuit potential measurements further confirmed the p-type conductivity, while Mott-Schottky experiments measured a hole concentration of 1.3 × 1019 cm-3. These results from photoelectrochemical measurements allow us to design prototype ultraviolet (UV) light-emitting diodes (LEDs) incorporating the AlGaN quantum-disks-in-nanowire and an optimized p-type AlGaN contact layer for UV-transparency. The ∼335 nm LEDs exhibited a low turn-on voltage of 5 V with a series resistance of 32 Ω, due to the efficient p-type doping of the AlGaN nanowires. The bias-dependent Raman measurements further revealed the negligible self-heating of devices. This study provides an attractive solution to evaluate the electrical properties of AlGaN, which is applicable to other wide bandgap nanostructures. Our results are expected to open doors to new applications for wide and ultra-wide bandgap materials.

[1]  C. Lieber,et al.  Synthesis of p-Type Gallium Nitride Nanowires for Electronic and Photonic Nanodevices , 2003 .

[2]  F. Giannazzo,et al.  Critical issues for interfaces to p-type SiC and GaN in power devices , 2012 .

[3]  Growth by molecular beam epitaxy and properties of inclined GaN nanowires on Si(001) substrate. , 2014, Nanotechnology.

[4]  Lattice-Polarity-Driven Epitaxy of Hexagonal Semiconductor Nanowires. , 2016, Nano letters.

[5]  Z. Mi,et al.  Defect-engineered GaN:Mg nanowire arrays for overall water splitting under violet light , 2015 .

[6]  R. Calarco,et al.  Doping of III-Nitride Nanowires Grown by Molecular Beam Epitaxy , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[7]  Zetian Mi,et al.  Molecular beam epitaxial growth and characterization of Al(Ga)N nanowire deep ultraviolet light emitting diodes and lasers , 2016 .

[8]  T. Gotschke,et al.  The influence of Mg doping on the nucleation of self-induced GaN nanowires , 2012 .

[9]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[10]  L. Largeau,et al.  Facet and in-plane crystallographic orientations of GaN nanowires grown on Si(111) , 2008, Nanotechnology.

[11]  Y. Taniyasu,et al.  An aluminium nitride light-emitting diode with a wavelength of 210 nanometres , 2006, Nature.

[12]  F. Fabregat‐Santiago,et al.  Determination of carrier density of ZnO nanowires by electrochemical techniques , 2006 .

[13]  H. Ryu,et al.  Effects of two-step Mg doping in p-GaN on efficiency characteristics of InGaN blue light-emitting diodes without AlGaN electron-blocking layers , 2013 .

[14]  Gerhard Tröster,et al.  Flexible a-IGZO Phototransistor for Instantaneous and Cumulative UV-Exposure Monitoring for Skin Health , 2016 .

[15]  U. Mishra,et al.  Interdigitated Multipixel Arrays for the Fabrication of High-Power Light-Emitting Diodes With Very Low Series Resistances, Reduced Current Crowding, and Improved Heat Sinking , 2007, IEEE Transactions on Electron Devices.

[16]  J. Turner,et al.  Synthesis of band-gap-reduced p-type ZnO films by Cu incorporation , 2007 .

[17]  Mark A. Reed,et al.  Electrical characterization of single GaN nanowires , 2005 .

[18]  W. Marsden I and J , 2012 .

[19]  Z. Mi,et al.  Surface Emitting, High Efficiency Near-Vacuum Ultraviolet Light Source with Aluminum Nitride Nanowires Monolithically Grown on Silicon. , 2015, Nano letters.

[20]  Zetian Mi,et al.  High efficiency AlGaN deep ultraviolet light emitting diodes on silicon , 2015, Photonics West - Optoelectronic Materials and Devices.

[21]  M. Djavid,et al.  Aluminum nitride nanowire light emitting diodes: Breaking the fundamental bottleneck of deep ultraviolet light sources , 2015, Scientific Reports.

[22]  Takayoshi Takano,et al.  Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275 nm achieved by improving light-extraction efficiency , 2017 .

[23]  M. Tchernycheva,et al.  Double strain state in a single GaN/AlN nanowire: Probing the core-shell effect by ultraviolet resonant Raman scattering , 2011 .

[24]  Tien Khee Ng,et al.  Highly uniform ultraviolet-A quantum-confined AlGaN nanowire LEDs on metal/silicon with a TaN interlayer , 2017 .

[25]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[26]  Zach DeVito,et al.  Opt , 2017 .

[27]  K. Bertness,et al.  GaN Nanowire Carrier Concentration Calculated from Light and Dark Resistance Measurements , 2009 .

[28]  R. Myers,et al.  Nanowire LEDs grown directly on flexible metal foil , 2016 .

[29]  J. Arbiol,et al.  Carrier confinement in GaN/Al x Ga 1-x N nanowire heterostructures (0 , 2011, 1109.3394.

[30]  M. Stutzmann,et al.  Optical properties of Si- and Mg-doped gallium nitride nanowires grown by plasma-assisted molecular beam epitaxy , 2008 .

[31]  Chao Shen,et al.  Facile Formation of High-Quality InGaN/GaN Quantum-Disks-in-Nanowires on Bulk-Metal Substrates for High-Power Light-Emitters. , 2016, Nano letters.

[32]  A. Pofelski,et al.  Molecular beam epitaxy growth of Al-rich AlGaN nanowires for deep ultraviolet optoelectronics , 2016 .

[33]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[34]  Kai Cui,et al.  High efficiency ultraviolet emission from AlxGa1−xN core-shell nanowire heterostructures grown on Si (111) by molecular beam epitaxy , 2012 .

[35]  Y. Sharma,et al.  In Situ Temperature Measurement of GaN-Based Ultraviolet Light-Emitting Diodes by Micro-Raman Spectroscopy , 2010 .

[36]  E. Monroy,et al.  AlGaN/AlN quantum dots for UV light emitters , 2013 .

[37]  Z. Mi,et al.  Three-Dimensional Quantum Confinement of Charge Carriers in Self-Organized AlGaN Nanowires: A Viable Route to Electrically Injected Deep Ultraviolet Lasers. , 2015, Nano letters.

[38]  H. Renevier,et al.  Growth, structural and optical properties of AlGaN nanowires in the whole composition range , 2013, Nanotechnology.

[39]  Jian Zhang,et al.  Lattice‐Symmetry‐Driven Epitaxy of Hierarchical GaN Nanotripods , 2017 .

[40]  Z. Mi,et al.  On the mechanism of highly efficient p-type conduction of Mg-doped ultra-wide-bandgap AlN nanostructures , 2017 .

[41]  Norihiko Kamata,et al.  Recent progress and future prospects of AlGaN-based high-efficiency deep-ultraviolet light-emitting diodes , 2014 .

[42]  Haiding Sun,et al.  Droop-free AlxGa1-xN/AlyGa1-yN quantum-disks-in-nanowires ultraviolet LED emitting at 337 nm on metal/silicon substrates. , 2017, Optics express.

[43]  Pallab Bhattacharya,et al.  An enhanced surface passivation effect in InGaN/GaN disk-in-nanowire light emitting diodes for mitigating Shockley-Read-Hall recombination. , 2015, Nanoscale.

[44]  P. Vogl,et al.  nextnano: General Purpose 3-D Simulations , 2007, IEEE Transactions on Electron Devices.

[45]  M. Stutzmann,et al.  Triple-twin domains in Mg doped GaN wurtzite nanowires: structural and electronic properties of this zinc-blende-like stacking , 2009, Nanotechnology.

[46]  S. Kret,et al.  Influence of substrate nitridation temperature on epitaxial alignment of GaN nanowires to Si(111) substrate , 2013, Nanotechnology.

[47]  T. Ben,et al.  Imaging and Analysis by Transmission Electron Microscopy of the Spontaneous Formation of Al-Rich Shell Structure in AlxGa1-xN/GaN Nanowires , 2012 .

[48]  Rami T. Elafandy,et al.  Droop-Free, Reliable, and High-Power InGaN/GaN Nanowire Light-Emitting Diodes for Monolithic Metal-Optoelectronics. , 2016, Nano letters.

[49]  B. Gayral,et al.  Quantum Dot-Like Behavior of Compositional Fluctuations in AlGaN Nanowires. , 2016, Nano letters.

[50]  Z. Mi,et al.  Ultralow-threshold electrically injected AlGaN nanowire ultraviolet lasers on Si operating at low temperature. , 2015, Nature nanotechnology.

[51]  Un Jeong Kim,et al.  Nearly single-crystalline GaN light-emitting diodes on amorphous glass substrates , 2011 .

[52]  Mim Lal Nakarmi,et al.  Electrical and optical properties of Mg-doped Al0.7Ga0.3N alloys , 2005 .

[53]  Andrew G. Glen,et al.  APPL , 2001 .

[54]  Wei Li,et al.  Surface Plasmon Enhanced Hot Exciton Emission in Deep UV‐Emitting AlGaN Multiple Quantum Wells , 2014 .

[55]  Grigory Simin,et al.  High-power deep ultraviolet light-emitting diodes basedon a micro-pixel design , 2004 .

[56]  M. Islam,et al.  Ultrawide‐Bandgap Semiconductors: Research Opportunities and Challenges , 2017 .

[57]  Z. Mi,et al.  p-Type dopant incorporation and surface charge properties of catalyst-free GaN nanowires revealed by micro-Raman scattering and X-ray photoelectron spectroscopy. , 2014, Nanoscale.

[58]  Lili Sun,et al.  Improved performance of UV-LED by p-AlGaN with graded composition , 2011 .

[59]  Todd E. Harvey,et al.  Controlled Nucleation of GaN Nanowires Grown with Molecular Beam Epitaxy , 2010 .

[60]  Ho Won Jang,et al.  Incorporation of Oxygen Donors in AlGaN , 2004 .

[61]  C. Thomsen,et al.  Local vibrational modes in Mg-doped GaN grown by molecular beam epitaxy , 1999 .

[62]  P. Bhattacharya,et al.  Catalyst-free InGaN/GaN nanowire light emitting diodes grown on (001) silicon by molecular beam epitaxy. , 2010, Nano letters.

[63]  Z. Mi,et al.  Highly efficient, spectrally pure 340 nm ultraviolet emission from AlxGa1−xN nanowire based light emitting diodes , 2013, Nanotechnology.

[64]  Lili Sun,et al.  AlGaN-based deep-ultraviolet light-emitting diodes grown on High-quality AlN template using MOVPE , 2015 .

[65]  L. Largeau,et al.  GaN/AlN free-standing nanowires grown by molecular beam epitaxy , 2008 .

[66]  M. G. Kibria,et al.  p-Type InN nanowires. , 2013, Nano letters.

[67]  Lars Samuelson,et al.  Spatially resolved Hall effect measurement in a single semiconductor nanowire. , 2012, Nature nanotechnology.

[68]  M. Ramsteiner,et al.  p-Type Doping of GaN Nanowires Characterized by Photoelectrochemical Measurements. , 2017, Nano letters.

[69]  F. Naranjo,et al.  Local vibrational modes of H complexes in Mg-doped GaN grown by molecular beam epitaxy , 2004 .

[70]  Debdeep Jena,et al.  Polarization-Induced Hole Doping in Wide–Band-Gap Uniaxial Semiconductor Heterostructures , 2010, Science.

[71]  Hideki Hirayama,et al.  Enhanced light extraction in 260 nm light-emitting diode with a highly transparent p-AlGaN layer , 2015 .

[72]  C. Thomsen,et al.  Local vibrational modes and compensation effects in Mg-doped GaN , 2003 .

[73]  Charles M. Lieber,et al.  Gallium Nitride Nanowire Nanodevices , 2002 .

[74]  Zetian Mi,et al.  An electrically pumped 239 nm AlGaN nanowire laser operating at room temperature , 2016 .

[75]  Tien Khee Ng,et al.  Enhanced Optoelectronic Performance of a Passivated Nanowire-Based Device: Key Information from Real-Space Imaging Using 4D Electron Microscopy. , 2016, Small.

[76]  Siddharth Rajan,et al.  Polarization-induced pn diodes in wide-band-gap nanowires with ultraviolet electroluminescence. , 2012, Nano letters.

[77]  Zetian Mi,et al.  Enhancing the light extraction efficiency of AlGaN deep ultraviolet light emitting diodes by using nanowire structures , 2016 .

[78]  Comparison of chemical, electronic, and optical properties of Mg-doped AlGaN , 2016 .

[79]  Takashi Ito,et al.  Band-Edge Energies and Photoelectrochemical Properties of n-Type Al x Ga1 − x N and In y Ga1 − y N Alloys , 2007 .

[80]  H. Morkoç,et al.  Luminescence properties of defects in GaN , 2005 .