How do we modulate our emotions? Parametric fMRI reveals cortical midline structures as regions specifically involved in the processing of emotional valences.

[1]  Karl J. Friston,et al.  Event‐related f MRI , 1997, Human brain mapping.

[2]  Hans-Jakob Steiger,et al.  Multimodal metabolic imaging of cerebral gliomas: positron emission tomography with [18F]fluoroethyl-L-tyrosine and magnetic resonance spectroscopy. , 2005, Journal of neurosurgery.

[3]  Dean Sabatinelli,et al.  Affective picture perception: gender differences in visual cortex? , 2004, Neuroreport.

[4]  Á. Pascual-Leone,et al.  Reciprocal modulation and attenuation in the prefrontal cortex: An fMRI study on emotional–cognitive interaction , 2004, Human brain mapping.

[5]  D. Perrett,et al.  Beauty in a smile: the role of medial orbitofrontal cortex in facial attractiveness , 2003, Neuropsychologia.

[6]  H. Flor,et al.  Gender differences in the processing of standardized emotional visual stimuli in humans: a functional magnetic resonance imaging study , 2003, Neuroscience Letters.

[7]  A. Lawrence,et al.  Functional neuroanatomy of emotions: A meta-analysis , 2003, Cognitive, affective & behavioral neuroscience.

[8]  M. Mesulam,et al.  Dissociation of Neural Representation of Intensity and Affective Valuation in Human Gustation , 2003, Neuron.

[9]  Noam Sobel,et al.  Dissociating Intensity from Valence as Sensory Inputs to Emotion , 2003, Neuron.

[10]  K. Luan Phan,et al.  Valence, gender, and lateralization of functional brain anatomy in emotion: a meta-analysis of findings from neuroimaging , 2003, NeuroImage.

[11]  J. Binder,et al.  A Parametric Manipulation of Factors Affecting Task-induced Deactivation in Functional Neuroimaging , 2003, Journal of Cognitive Neuroscience.

[12]  D. Weinberger,et al.  Neocortical modulation of the amygdala response to fearful stimuli , 2003, Biological Psychiatry.

[13]  Albert Gjedde,et al.  Emotional valence modulates activity in the posterior fusiform gyrus and inferior medial prefrontal cortex in social perception , 2003, NeuroImage.

[14]  K. Luan Phan,et al.  Subjective rating of emotionally salient stimuli modulates neural activity , 2003, NeuroImage.

[15]  G. Glover,et al.  Dissociated neural representations of intensity and valence in human olfaction , 2003, Nature Neuroscience.

[16]  Stephan Hamann,et al.  Nosing in on the emotional brain , 2003, Nature Neuroscience.

[17]  S. Taylor,et al.  Extended Amygdala and Emotional Salience: A PET Activation Study of Positive and Negative Affect , 2003, Neuropsychopharmacology.

[18]  Mirja Tenhunen,et al.  Faster Choice-Reaction Times to Positive than to Negative Facial Expressions: The Role of Cognitive , 2003 .

[19]  Jason P. Mitchell,et al.  Distinct neural systems subserve person and object knowledge , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Evelyn C. Ferstl,et al.  What Does the Frontomedian Cortex Contribute to Language Processing: Coherence or Theory of Mind? , 2002, NeuroImage.

[21]  Francesco Fera,et al.  The Amygdala Response to Emotional Stimuli: A Comparison of Faces and Scenes , 2002, NeuroImage.

[22]  J. Warren Synaptic Self: How our Brains Become who we Are , 2002 .

[23]  C. N. Macrae,et al.  Finding the Self? An Event-Related fMRI Study , 2002, Journal of Cognitive Neuroscience.

[24]  A. Anderson,et al.  Is the Human Amygdala Critical for the Subjective Experience of Emotion? Evidence of Intact Dispositional Affect in Patients with Amygdala Lesions , 2002, Journal of Cognitive Neuroscience.

[25]  K. Luan Phan,et al.  Functional Neuroanatomy of Emotion: A Meta-Analysis of Emotion Activation Studies in PET and fMRI , 2002, NeuroImage.

[26]  Sharlene D. Newman,et al.  Baseline conditions and subtractive logic in neuroimaging , 2001, Human Brain Mapping.

[27]  Craig E. L. Stark,et al.  When zero is not zero: The problem of ambiguous baseline conditions in fMRI , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[28]  M. Raichle,et al.  Searching for a baseline: Functional imaging and the resting human brain , 2001, Nature Reviews Neuroscience.

[29]  N. Logothetis,et al.  Neurophysiological investigation of the basis of the fMRI signal , 2001, Nature.

[30]  Robert Turner,et al.  Compensation of susceptibility induced BOLD sensitivity losses in echo-planar fMRI imaging , 2001, NeuroImage.

[31]  Sterling C. Johnson,et al.  Dissociable representations of emotional state in dorsal and ventral medial prefrontal cortex , 2001, NeuroImage.

[32]  G. Shulman,et al.  Medial prefrontal cortex and self-referential mental activity: Relation to a default mode of brain function , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[33]  G L Shulman,et al.  INAUGURAL ARTICLE by a Recently Elected Academy Member:A default mode of brain function , 2001 .

[34]  E. Rolls,et al.  Abstract reward and punishment representations in the human orbitofrontal cortex , 2001, Nature Neuroscience.

[35]  M. Raichle,et al.  The Emotional Modulation of Cognitive Processing: An fMRI Study , 2000, Journal of Cognitive Neuroscience.

[36]  M. Petrides,et al.  Orbitofrontal involvement in the processing of unpleasant auditory information , 2000, The European journal of neuroscience.

[37]  R. Elliott,et al.  Selective attention to emotional stimuli in a verbal go/no‐go task: an fMRI study , 2000, Neuroreport.

[38]  S. Petersen,et al.  Characterizing the Hemodynamic Response: Effects of Presentation Rate, Sampling Procedure, and the Possibility of Ordering Brain Activity Based on Relative Timing , 2000, NeuroImage.

[39]  U. Habel,et al.  Gender differences in regional cerebral activity during sadness , 2000, Human brain mapping.

[40]  John Patrick Aggleton,et al.  The Amygdala : a functional analysis , 2000 .

[41]  R. Kötter,et al.  Functional dissociation between medial and lateral prefrontal cortical spatiotemporal activation in negative and positive emotions: a combined fMRI/MEG study. , 2000, Cerebral cortex.

[42]  S. Paradiso,et al.  Cerebral blood flow changes associated with attribution of emotional valence to pleasant, unpleasant, and neutral visual stimuli in a PET study of normal subjects. , 1999, The American journal of psychiatry.

[43]  S. Scott,et al.  Saying it with feeling: neural responses to emotional vocalizations , 1999, Neuropsychologia.

[44]  R. Dolan,et al.  Common effects of emotional valence, arousal and attention on neural activation during visual processing of pictures , 1999, Neuropsychologia.

[45]  S. G. Cox,et al.  Functional MRI study of the cognitive generation of affect. , 1999, The American journal of psychiatry.

[46]  R. Davidson,et al.  The functional neuroanatomy of emotion and affective style , 1999, Trends in Cognitive Sciences.

[47]  J. Desmond,et al.  Hemispheric asymmetry for emotional stimuli detected with fMRI , 1998, Neuroreport.

[48]  Karl J. Friston,et al.  Characterizing Stimulus–Response Functions Using Nonlinear Regressors in Parametric fMRI Experiments , 1998, NeuroImage.

[49]  L. Obler,et al.  Right hemisphere emotional perception: evidence across multiple channels. , 1998, Neuropsychology.

[50]  Karl J. Friston,et al.  Nonlinear event‐related responses in fMRI , 1998, Magnetic resonance in medicine.

[51]  J. Panksepp Affective Neuroscience: The Foundations of Human and Animal Emotions , 1998 .

[52]  G. Fink,et al.  Neural activation during selective attention to subjective emotional responses , 1997, Neuroreport.

[53]  M. Bradley,et al.  Neuroanatomical correlates of pleasant and unpleasant emotion , 1997, Neuropsychologia.

[54]  R. Lane,et al.  Neuroanatomical correlates of happiness, sadness, and disgust. , 1997, The American journal of psychiatry.

[55]  Karl J. Friston,et al.  Neuroanatomical correlates of externally and internally generated human emotion. , 1997, The American journal of psychiatry.

[56]  R. Dolan,et al.  The interaction between mood and cognitive function studied with PET , 1997, Psychological Medicine.

[57]  R. Adolphs,et al.  Cortical Systems for the Recognition of Emotion in Facial Expressions , 1996, The Journal of Neuroscience.

[58]  Karl J. Friston,et al.  Statistical parametric maps in functional imaging: A general linear approach , 1994 .

[59]  J. D. McGaugh,et al.  Amygdaloid complex lesions differentially affect retention of tasks using appetitive and aversive reinforcement. , 1990, Behavioral neuroscience.