A new generalization of the Erdös-Ko-Rado theorem
暂无分享,去创建一个
Abstract Let A and B be systems of k and l element subsets of an n element set respectively. Suppose that A ∩ B ≠ ⊘ for all A ϵ A , B ϵ B . It is proved that | A | | B ⩽ n −1 k −1 n −1 l −1 , whenever n ⩾ 2k + l − 2 (k ⩾ l).
[1] O. Ore. Theory of Graphs , 1962 .
[2] P. Erdös,et al. INTERSECTION THEOREMS FOR SYSTEMS OF FINITE SETS , 1961 .
[3] David E. Daykin. Erdös-Ko-Rado from Kruskal-Katona , 1974, J. Comb. Theory, Ser. A.
[4] D. Kleitman. On a conjecture of milner on k-graphs with non-disjoint edges , 1968 .
[5] E. Sperner. Ein Satz über Untermengen einer endlichen Menge , 1928 .