Numerical modeling of lithium ion battery for predicting thermal behavior in a cylindrical cell

The thermal behavior of lithium ion battery during charge and discharge is investigated by a numerical simulation. The commercially available cylindrical 18650 battery is modeled in this study. Two different models are used. The porous electrode model is simulated to obtain the Li content inside the particles. The transient thermo-electric model is used to predict the temperature distribution inside the cell. The results suggest that the increase in temperature during discharge is higher than that during charge. The temperature difference between charge and discharge is decreased with increasing C-rates. At a rate of 1C, the discharge temperature increases with a waving region at the beginning, whereas the charge temperature increases until certain point and then decreases. The thermal behavior is closely related to the change in entropy and applied current.

[1]  Ralph E. White,et al.  Capacity fade of Sony 18650 cells cycled at elevated temperatures. Part II. Capacity fade analysis , 2002 .

[2]  Ralph E. White,et al.  Parameter Estimation and Model Discrimination for a Lithium-Ion Cell , 2007 .

[3]  Ralph E. White,et al.  Mathematical modeling of a lithium ion battery with thermal effects in COMSOL Inc. Multiphysics (MP) , 2011 .

[4]  S. Kikkawa,et al.  Electronic phase diagram of the layered cobalt oxide system LixCoO2 (0.0≤x≤1.0) , 2009, 0909.3556.

[5]  Ralph E. White,et al.  Mathematical modeling of the capacity fade of Li-ion cells , 2003 .

[6]  U. Kim,et al.  Modeling for the scale-up of a lithium-ion polymer battery , 2009 .

[7]  M. Verbrugge,et al.  Temperature and Current Distribution in Thin‐Film Batteries , 1999 .

[8]  Tsutomu Ohzuku,et al.  Formation of Lithium‐Graphite Intercalation Compounds in Nonaqueous Electrolytes and Their Application as a Negative Electrode for a Lithium Ion (Shuttlecock) Cell , 1993 .

[9]  Greg F. Naterer,et al.  Heat transfer in phase change materials for thermal management of electric vehicle battery modules , 2010 .

[10]  Ralph E. White,et al.  Thermodynamic model development for lithium intercalation electrodes , 2008 .

[11]  M. Doyle,et al.  Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell , 1993 .

[12]  Ralph E. White,et al.  Review of Models for Predicting the Cycling Performance of Lithium Ion Batteries , 2006 .

[13]  B. Fultz,et al.  Entropy of Li intercalation in LixCoO2 , 2004 .

[14]  Ralph E. White,et al.  Comparison between Computer Simulations and Experimental Data for High-Rate Discharges of Plastic Lithium-Ion Batteries , 2000 .

[15]  Dawn Bernardi,et al.  Analysis of pulse and relaxation behavior in lithium-ion batteries , 2011 .

[16]  Ralph E. White,et al.  Semianalytical Method of Solution for Solid Phase Diffusion in Lithium Ion Battery Electrodes: Variable Diffusion Coefficient , 2011 .

[17]  Chee Burm Shin,et al.  A two-dimensional modeling of a lithium-polymer battery , 2006 .

[18]  Tsutomu Ohzuku,et al.  Solid‐State Redox Reactions of LiCoO2 (R3̅m) for 4 Volt Secondary Lithium Cells , 1994 .

[19]  Ralph E. White,et al.  Development of First Principles Capacity Fade Model for Li-Ion Cells , 2004 .

[20]  Ji‐Guang Zhang,et al.  Effects of entropy changes in anodes and cathodes on the thermal behavior of lithium ion batteries , 2009 .

[21]  Ralph E. White,et al.  A Mathematical Model for a Lithium-Ion Battery/Electrochemical Capacitor Hybrid System , 2005 .

[22]  U. Kim,et al.  Effect of electrode configuration on the thermal behavior of a lithium-polymer battery , 2008 .

[23]  K. Onda,et al.  Experimental Study on Heat Generation Behavior of Small Lithium-Ion Secondary Batteries , 2003 .

[24]  B. Fultz,et al.  Thermodynamics of Lithium Intercalation into Graphites and Disordered Carbons , 2004 .

[25]  T. Araki,et al.  Thermal behavior of small lithium-ion battery during rapid charge and discharge cycles , 2006 .

[26]  D. Jeon,et al.  Thermal modeling of cylindrical lithium ion battery during discharge cycle , 2011 .

[27]  Ralph E. White,et al.  Erratum: A Mathematical Model for a Lithium-Ion Battery/Electrochemical Capacitor Hybrid System [ J. Electrochem. Soc. , 152 , A1682 (2005)] , 2006 .

[28]  Arun S. Mujumdar,et al.  Thermal–electrochemical model for passive thermal management of a spiral-wound lithium-ion battery , 2012 .

[29]  Y. Inui,et al.  Simulation of temperature distribution in cylindrical and prismatic lithium ion secondary batteries , 2007 .

[30]  Stephane Levasseur,et al.  The insulator-metal transition upon lithium deintercalation from LiCoO2: electronic properties and 7Li NMR study , 1999 .