Implementation of classical linear stochastic systems using quantum optical components

The purpose of this paper is to show how classical linear stochastic systems can be physically implemented using quantum optical components. Quantum optical systems typically have much higher bandwidth than electronic devices, meaning faster response and processing times, and hence have a potential for providing better performance than classical systems. A complete procedure is proposed for a stable quantum linear stochastic system realizing a given stable classical linear stochastic system. Some examples are given to illustrate the application of the main results.

[1]  Hendra Ishwara Nurdin,et al.  Quantum Optical Realization of Classical Linear Stochastic Systems , 2013, Autom..

[2]  Hendra Ishwara Nurdin,et al.  Network Synthesis of Linear Dynamical Quantum Stochastic Systems , 2008, SIAM J. Control. Optim..

[3]  U. Leonhardt Quantum physics of simple optical instruments , 2003, quant-ph/0305007.

[4]  Hidenori Kimura,et al.  Transfer function approach to quantum control-part I: Dynamics of quantum feedback systems , 2003, IEEE Trans. Autom. Control..

[5]  E. Merzbacher,et al.  Quantum Mechanics, 3rd Edition , 1997 .

[6]  Hendra Ishwara Nurdin Synthesis of linear quantum stochastic systems via quantum feedback networks , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[7]  G. Milburn,et al.  Quantum Measurement and Control , 2009 .

[8]  Hendra Ishwara Nurdin,et al.  On Synthesis of Linear Quantum Stochastic Systems by Pure Cascading , 2010, IEEE Transactions on Automatic Control.

[9]  Ian R. Petersen,et al.  Coherent quantum LQG control , 2007, Autom..

[10]  Ian R. Petersen,et al.  Control of Linear Quantum Stochastic Systems , 2007 .

[11]  E. Merzbacher Quantum mechanics , 1961 .

[12]  M. R. James,et al.  Quantum Feedback Networks: Hamiltonian Formulation , 2008, 0804.3442.

[13]  Matthew R. James,et al.  The Series Product and Its Application to Quantum Feedforward and Feedback Networks , 2007, IEEE Transactions on Automatic Control.

[14]  L. Schiff,et al.  Quantum Mechanics, 3rd ed. , 1973 .

[15]  Milburn,et al.  Quantum theory of optical feedback via homodyne detection. , 1993, Physical review letters.

[16]  B. Muzykantskii,et al.  ON QUANTUM NOISE , 1995 .

[17]  Matthew R. James,et al.  Direct and Indirect Couplings in Coherent Feedback Control of Linear Quantum Systems , 2010, IEEE Transactions on Automatic Control.

[18]  H.M. Wiseman,et al.  Feedback control of linear quantum systems , 2005, 2005 Quantum Electronics and Laser Science Conference.

[19]  Milburn,et al.  All-optical versus electro-optical quantum-limited feedback. , 1994, Physical review. A, Atomic, molecular, and optical physics.