From the Ancient Tribes to Modern Societies, Microalgae Evolution from a Simple Food to an Alternative Fuel Source

Abstract Photosynthesis, the mechanism responsible for O2 evolution on Earth, is also a critical instrument for fuel of the future. Observations on algal biotechnology, and tracing back algae utilization to ancient tribes, give key clues to the development of new-generation biofuels. Microalgae as a promising photosynthetic “farm” have numerous aspects from foods to medicines to biofuels. The starting point of algal biofuels also comes from the awareness of the requirement for a better source. Conventional fossil fuels are argued to be depleting and alternative biofuels are discussed to be competitive and promising in real case leaving possible scenarios. With this knowledge, tracing the historical development of microalgal biofuels in the scope of photosynthesis, production technologies, possible biofuel types, and genetic engineering tools as a relatively new concept have been discussed and highlighted in this chapter. Also the global projects and their contribution to the literature are pointed out to observe logical results for the development of microalgal biofuels.

[1]  Cecilia Faraloni,et al.  Outdoor H₂ production in a 50-L tubular photobioreactor by means of a sulfur-deprived culture of the microalga Chlamydomonas reinhardtii. , 2012, Journal of biotechnology.

[2]  J. Mclachlan,et al.  Marine Phytoplankter Fatty Acids , 1968 .

[3]  F. G. Acién,et al.  Characterization of a flat plate photobioreactor for the production of microalgae , 2008 .

[4]  Olivier Bernard,et al.  Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. , 2009, Biotechnology advances.

[5]  M. Kamen,et al.  Long-Lived Radioactive Carbon: C 14 , 1982 .

[6]  Robert E. Jinkerson,et al.  Genetic disruption of both Chlamydomonas reinhardtii [FeFe]-hydrogenases: Insight into the role of HYDA2 in H₂ production. , 2012, Biochemical and biophysical research communications.

[7]  Robert Eugene Blankenship Early Evolution of Photosynthesis1 , 2010, Plant Physiology.

[8]  O. Pulz,et al.  Photobioreactors: production systems for phototrophic microorganisms , 2001, Applied Microbiology and Biotechnology.

[9]  Rudolf Diesel,et al.  Die Entstehung des Dieselmotors , 1913 .

[10]  Navid R. Moheimani,et al.  Algae for Biofuels and Energy , 2013, Developments in Applied Phycology.

[11]  B. Kê,et al.  Dynamics of the history of photosynthesis research , 1993, Photosynthesis Research.

[12]  K. Nickelsen Otto Warburg’s first approach to photosynthesis , 2007, Photosynthesis Research.

[13]  S. Purton,et al.  ALGAL TRANSGENICS IN THE GENOMIC ERA 1 , 2005 .

[14]  M. Seibert,et al.  Photobiological Production of Hydrogen: A Solar Energy Conversion Option , 1979 .

[15]  Ivan Málek,et al.  Dual Purpose Open Circulation Units for Large Scale Culture of Algae in Temperate Zones. I. Basic Design Considerations and Scheme of a Pilot Plant , 1970 .

[16]  J. C. Goldman,et al.  Mass production of marine algae in outdoor cultures , 1975, Nature.

[17]  D. Schwimmer,et al.  The Role of Algae and Plankton in Medicine , 2011 .

[18]  M. Ghirardi,et al.  Identification of genes required for hydrogenase activity in Chlamydomonas reinhardtii. , 2005, Biochemical Society transactions.

[19]  J. Grobbelaar Microalgae mass culture: the constraints of scaling-up , 2011, Journal of Applied Phycology.

[20]  Y. Chisti Biodiesel from microalgae. , 2007, Biotechnology advances.

[21]  M. Ghirardi,et al.  Sustained hydrogen photoproduction by Chlamydomonas reinhardtii: Effects of culture parameters. , 2002 .

[22]  K. Shimizu,et al.  Integration of the information from gene expression and metabolic fluxes for the analysis of the regulatory mechanisms in Synechocystis , 2002, Applied Microbiology and Biotechnology.

[23]  S. Chu The Influence of the Mineral Composition of the Medium on the Growth of Planktonic Algae: Part I. Methods and Culture Media , 1942 .

[24]  J. Benemann,et al.  Hydrogen Production by the Thermophilic Alga Mastigocladus laminosus: Effects of Nitrogen, Temperature, and Inhibition of Photosynthesis , 1979, Applied and environmental microbiology.

[25]  Wenxu Zhou,et al.  The Metabolome of Chlamydomonas reinhardtii following Induction of Anaerobic H2 Production by Sulfur Depletion* , 2009, The Journal of Biological Chemistry.

[26]  S. Aaronson EFFECT OF INCUBATION TEMPERATURE ON THE MACROMOLECULAR AND LIPID CONTENT OF THE PHYTOFLAGELLATE OCHROMONAS DANICA 1 , 1973 .

[27]  R. Samson,et al.  Biogas production from anaerobic digestion of Spirulina maxima algal biomass. , 1982, Biotechnology and bioengineering.

[28]  O. Kruse,et al.  Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. , 2010, Journal of biotechnology.

[29]  Daniel Chaumont,et al.  Biotechnology of algal biomass production: a review of systems for outdoor mass culture , 1993, Journal of Applied Phycology.

[30]  Lu Zhang,et al.  Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. , 2000, Plant physiology.

[31]  Howard Gest,et al.  History of the word photosynthesis and evolution of its definition , 2004, Photosynthesis Research.

[32]  Angelika Königseder,et al.  Walter de Gruyter , 2016 .

[33]  John W. Peters,et al.  [FeFe] Hydrogenase Genetic Diversity Provides Insight into Molecular Adaptation in a Saline Microbial Mat Community , 2009, Applied and Environmental Microbiology.

[34]  J. Bernal-Castillo,et al.  Spirulina (Arthrospira): An edible microorganism: A review , 2003 .

[35]  A. Grossman,et al.  The regulation of photosynthetic electron transport during nutrient deprivation in Chlamydomonas reinhardtii. , 1998, Plant physiology.

[36]  J. H. Williams,et al.  Studies on the mass culture of various algae in carboys and deep-tank fermentations. , 1954, Applied microbiology.

[37]  David Lewis,et al.  Anaerobic digestion of algae biomass: A review , 2014 .

[38]  Y. Ho,et al.  A bibliometric analysis of research papers published on photosynthesis: 1992–2009 , 2012, Photosynthetica.

[39]  A. Mayer,et al.  Problems of design and ecological considerations in mass culture of algae , 1964 .

[40]  Malcolm R. Brown,et al.  EFFECTS OF HARVEST STAGE AND LIGHT ON THE BIOCHEMICAL COMPOSITION OF THE DIATOM THALASSIOSIRA PSEUDONANA 1 , 1996 .

[41]  S. Ball,et al.  Hydrogen Production in Chlamydomonas: Photosystem II-Dependent and -Independent Pathways Differ in Their Requirement for Starch Metabolism1[W] , 2009, Plant Physiology.

[42]  J. Rupprecht,et al.  Transcriptome for Photobiological Hydrogen Production Induced by Sulfur Deprivation in the Green Alga Chlamydomonas reinhardtii , 2008, Eukaryotic Cell.

[43]  Hiroshi Tamiya,et al.  Mass Culture of Algae , 1957 .

[44]  G. Allan The Regional Economic Impacts of Biofuels: A Review of Multisectoral Modelling Techniques and Evaluation of Applications , 2015 .

[45]  Jens Rupprecht,et al.  From systems biology to fuel--Chlamydomonas reinhardtii as a model for a systems biology approach to improve biohydrogen production. , 2009, Journal of biotechnology.

[46]  Gerhard Knothe,et al.  Biodiesel and renewable diesel: A comparison , 2010 .

[47]  H. Gest Samuel Ruben's Contributions to Research on Photosynthesis and Bacterial Metabolism with Radioactive Carbon , 2004, Photosynthesis Research.

[48]  O. Pulz,et al.  Valuable products from biotechnology of microalgae , 2004, Applied Microbiology and Biotechnology.

[49]  Feng Chen,et al.  High cell density culture of microalgae in heterotrophic growth , 1996 .

[50]  Michael Seibert,et al.  Prolongation of H2 photoproduction by immobilized, sulfur-limited Chlamydomonas reinhardtii cultures. , 2008, Journal of biotechnology.

[51]  Robert E. Jinkerson,et al.  Genetic Engineering of Algae for Enhanced Biofuel Production , 2010, Eukaryotic Cell.

[52]  M. Alvim-Ferraz,et al.  Carbon dioxide capture from flue gases using microalgae: Engineering aspects and biorefinery concept , 2012 .

[53]  R. Wijffels,et al.  An Outlook on Microalgal Biofuels , 2010, Science.

[54]  Yingkuan Wang,et al.  Cultivation of Green Algae Chlorella sp. in Different Wastewaters from Municipal Wastewater Treatment Plant , 2010, Applied biochemistry and biotechnology.

[55]  S. Oncel,et al.  Biohydrogen production from engineered microalgae Chlamydomonas reinhardtii , 2014 .

[56]  John R. Benemann,et al.  Feasibility analysis of photobiological hydrogen production , 1997 .

[57]  M. Stanley,et al.  A rapid and general method for measurement of protein in micro-algal biomass. , 2013, Bioresource technology.

[58]  J. Myers,et al.  Conceptual developments in photosynthesis, 1924-1974. , 1974, Plant physiology.

[59]  W. Oswald,et al.  Biological transformation of solar energy. , 1960, Advances in applied microbiology.

[60]  J. Sevilla,et al.  Modeling of biomass productivity in tubular photobioreactors for microalgal cultures: effects of dilution rate, tube diameter, and solar irradiance , 1998, Biotechnology and bioengineering.

[61]  Michael A. Borowitzka,et al.  Energy from Microalgae: A Short History , 2013 .

[62]  Ye Sun,et al.  Hydrolysis of lignocellulosic materials for ethanol production: a review. , 2002, Bioresource technology.

[63]  J. Benemann,et al.  Look Back at the U.S. Department of Energy's Aquatic Species Program: Biodiesel from Algae; Close-Out Report , 1998 .

[64]  G. Peltier,et al.  Hydrogen production by Chlamydomonas reinhardtii: an elaborate interplay of electron sources and sinks , 2007, Planta.

[65]  M. Calvin,et al.  The Path of Carbon in Photosynthesis. XIV. , 1951 .

[66]  Michael A. Borowitzka,et al.  Microalgae for aquaculture: Opportunities and constraints , 1997, Journal of Applied Phycology.

[67]  M. Ghirardi,et al.  Hydrogen Photoproduction Is Attenuated by Disruption of an Isoamylase Gene in Chlamydomonas reinhardtii , 2004, The Plant Cell Online.

[68]  S. Oncel,et al.  Microalgal biohydrogen production considering light energy and mixing time as the two key features for scale-up. , 2012, Bioresource technology.

[69]  A. Grossman Paths toward Algal Genomics , 2005, Plant Physiology.

[70]  S. Oncel,et al.  Comparison of tubular and panel type photobioreactors for biohydrogen production utilizing Chlamydomonas reinhardtii considering mixing time and light intensity. , 2014, Bioresource technology.

[71]  J. Rask,et al.  Interactions of marine mammals and birds with offshore membrane enclosures for growing algae (OMEGA) , 2014, Aquatic biosystems.

[72]  F. Vardar-Sukan,et al.  Application of proton exchange membrane fuel cells for the monitoring and direct usage of biohydrogen produced by Chlamydomonas reinhardtii , 2011 .

[73]  Y. Chisti,et al.  Botryococcus braunii: A Renewable Source of Hydrocarbons and Other Chemicals , 2002, Critical reviews in biotechnology.

[74]  A. M. Buswell,et al.  The Methane Fermentation of Carbohydrates1,2 , 1933 .

[75]  L. Domingues,et al.  Technological trends, global market, and challenges of bio-ethanol production. , 2010, Biotechnology advances.

[76]  J. Myers,et al.  CULTURE CONDITIONS AND THE DEVELOPMENT OF THE PHOTOSYNTHETIC MECHANISM , 1944, The Journal of general physiology.

[77]  R. J. Theriault HETEROTROPHIC GROWTH AND PRODUCTION OF XANTHOPHYLLS BY CHLORELLA PYRENOIDOSA. , 1965, Applied microbiology.

[78]  R. Andersen,et al.  Algal culturing techniques , 2005 .

[79]  Carl J. Soeder,et al.  Massive cultivation of microalgae: Results and prospects , 1980, Hydrobiologia.

[80]  P. Spolaore,et al.  Commercial applications of microalgae. , 2006, Journal of bioscience and bioengineering.

[81]  J. Marín-Navarro,et al.  Substitution of tyrosine residues at the aromatic cluster around the betaA-betaB loop of rubisco small subunit affects the structural stability of the enzyme and the in vivo degradation under stress conditions. , 2006, Biochemistry.

[82]  D T Zallen,et al.  The “light” organism for the job: Green algae and photosynthesis research , 1993, Journal of the history of biology.

[83]  Mass production of algae: bioengineering aspects. , 1977 .

[84]  H. Gest A 'misplaced chapter' in the history of photosynthesis research; the second publication (1796) on plant processes by Dr Jan Ingen-Housz, MD, discoverer of photosynthesis , 1997, Photosynthesis Research.

[85]  M. Moo-young,et al.  Ethanol fermentation technologies from sugar and starch feedstocks. , 2008, Biotechnology advances.

[86]  Qiang Hu,et al.  Handbook of microalgal culture , 2003 .

[87]  M. Calvin,et al.  THE PATH OF CARBON IN PHOTOSYNTHESIS. III , 1948 .

[88]  Olaf Kruse,et al.  Improved Photobiological H2 Production in Engineered Green Algal Cells* , 2005, Journal of Biological Chemistry.

[89]  A. Darzins,et al.  The promise and challenges of microalgal‐derived biofuels , 2009 .

[90]  N. Usui,et al.  The biological CO2 fixation and utilization project by RITE(1) — Highly-effective photobioreactor system — , 1997 .

[91]  J. Myers,et al.  STUDIES ON PHOTOSYNTHESIS : SOME EFFECTS OF LIGHT OF HIGH INTENSITY ON CHLORELLA. , 1940 .

[92]  C. E. Hartt,et al.  Carbon Dioxide Fixation in Sugarcane Leaves. , 1965, Plant physiology.

[93]  J. E. Burris,et al.  Photosynthesis, photorespiration, and dark respiration in eight species of algae , 1977 .

[94]  Klaus Schulten,et al.  [FeFe]-hydrogenases and photobiological hydrogen production , 2006, SPIE Optics + Photonics.

[95]  Y. Bashan,et al.  Heterotrophic cultures of microalgae: metabolism and potential products. , 2011, Water research.

[96]  H. A. Hoppe MARINE ALGAE AND THEIR PRODUCTS AND CONSTITUENTS IN PHARMACY , 1979 .

[97]  D. Devault,et al.  PHOTOSYNTHESIS WITH RADIO-CARBON. , 1939, Science.

[98]  Daniel Karcher,et al.  Generation of Chlamydomonas strains that efficiently express nuclear transgenes. , 2009, The Plant journal : for cell and molecular biology.

[99]  Kajan Srirangan,et al.  Biochemical and genetic engineering strategies to enhance hydrogen production in photosynthetic algae and cyanobacteria. , 2011, Bioresource technology.

[100]  A. Benson Following the path of carbon in photosynthesis: a personal story , 2004, Photosynthesis Research.

[101]  The Path of Carbon in Photosynthesis IX. Photosynthesis,Photoreduction and the Hydrogen-Oxygen-Carbon Dioxide Dark Reaction , 1950 .

[102]  R. Pallela,et al.  Impact of marine micro- and macroalgal consumption on photoprotection. , 2011, Advances in food and nutrition research.

[103]  O. Warburg,et al.  Über den Einfluß der Wellenlänge auf den Energieumsatz bei der Kohlensäureassimilation , 1923 .

[104]  M. Calvin,et al.  The path of carbon in photosynthesis. V. Paper chromatography and radioautography of the products , 1949 .

[105]  M. Borowitzka Fats, oils and hydrocarbons , 1988 .

[106]  Hideyuki Michiki,et al.  Biological CO2 fixation and utilization project , 1995 .

[107]  H. A. Hoppe,et al.  Marine algae in pharmaceutical science , 1979 .

[108]  J. C. Goldman,et al.  Outdoor algal mass cultures—I. Applications , 1979 .

[109]  M. Ghirardi,et al.  Application of gene-shuffling for the rapid generation of novel [FeFe]-hydrogenase libraries , 2006, Biotechnology Letters.

[110]  Neil Hewitt,et al.  Techno-economic assessment of biofuel development by anaerobic digestion of European marine cold-water seaweeds. , 2013, Bioresource technology.

[111]  Eric E. Jarvis,et al.  Manipulation of microalgal lipid production using genetic engineering , 1996 .

[112]  Julian N. Rosenberg,et al.  A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. , 2008, Current opinion in biotechnology.

[113]  R. Sager Inheritance in the Green Alga Chlamydomonas Reinhardi. , 1955, Genetics.

[114]  O. Warburg Über die Geschwindigkeit der photochemischen Kohlensäurezersetzung in lebenden Zellen. II , 1928 .

[115]  E. J. Allen,et al.  On the Artificial Culture of Marine Plankton Organisms , 1910, Journal of the Marine Biological Association of the United Kingdom.

[116]  Govindjee,et al.  Discoveries in Oxygenic Photosynthesis (1727–2003): A Perspective , 2004, Photosynthesis Research.

[117]  Comparison of screening methods for high-throughput determination of oil yields in micro-algal biofuel strains , 2012, Journal of Applied Phycology.

[118]  M. Stanley,et al.  Biogas from Macroalgae: is it time to revisit the idea? , 2012, Biotechnology for Biofuels.

[119]  M. Kamen CHAPTER IX – Long-Lived Radioactive Carbon (C14) , 1941 .

[120]  Jack Rubin,et al.  FERMENTATIVE AND PHOTOCHEMICAL PRODUCTION OF HYDROGEN IN ALGAE , 1942, The Journal of general physiology.

[121]  John G. Day,et al.  Overcoming biological constraints to enable the exploitation of microalgae for biofuels. , 2012, Bioresource technology.

[122]  J. W. Peters,et al.  Engineering algae for biohydrogen and biofuel production. , 2009, Current opinion in biotechnology.

[123]  Adenise Lorenci Woiciechowski,et al.  Brazilian biofuel program: an overview. , 2005 .

[124]  M. R. Droop,et al.  25 Years of Algal Growth Kinetics A Personal View , 1983 .

[125]  Anja Doebbe,et al.  Functional integration of the HUP1 hexose symporter gene into the genome of C. reinhardtii: Impacts on biological H(2) production. , 2007, Journal of biotechnology.

[126]  Gyoo Yeol Jung,et al.  Current status of the metabolic engineering of microorganisms for biohydrogen production. , 2011, Bioresource technology.

[127]  Olaf Kruse,et al.  Microalgal hydrogen production. , 2010, Current opinion in biotechnology.

[128]  Hui Wang,et al.  Biofuel from microalgae: current status, opportunity and challenge , 2014 .

[129]  D. F. Toerien,et al.  The effect of carbon on algal growth—Its relationship to eutrophication , 1972 .

[130]  E. Becker Micro-algae as a source of protein. , 2007, Biotechnology advances.

[131]  Juanita Mathews,et al.  Metabolic pathway engineering for enhanced biohydrogen production , 2009 .

[132]  Y. Chisti Biodiesel from microalgae beats bioethanol. , 2008, Trends in biotechnology.

[133]  K. Tran,et al.  Towards Sustainable Production of Biofuels from Microalgae , 2008, International journal of molecular sciences.

[134]  H. Atsushi,et al.  CO2 fixation and ethanol production with microalgal photosynthesis and intracellular anaerobic fermentation , 1997 .

[135]  M. Calvin,et al.  The Path of Carbon in Photosynthesis. X. Carbon Dioxide Assimilation in Plants , 1950 .

[136]  Sara L. Zimmer,et al.  The Chlamydomonas Genome Reveals the Evolution of Key Animal and Plant Functions , 2007, Science.

[137]  J. Xiong Photosynthesis: what color was its origin? , 2007, Genome Biology.

[138]  R. Sager,et al.  NUTRITIONAL STUDIES WITH CHLAMYDOMONAS REINHARDI , 1953, Annals of the New York Academy of Sciences.

[139]  D. Nicholas,et al.  The photosynthetic production of hydrogen , 1976 .

[140]  M. Stanley,et al.  Effects of temperature and nutrient regimes on biomass and lipid production by six oleaginous microalgae in batch culture employing a two-phase cultivation strategy. , 2013, Bioresource technology.

[141]  Gerhard Knothe History of Vegetable Oil-Based Diesel Fuels , 2010 .

[142]  M. Čertík,et al.  Biosynthesis and regulation of microbial polyunsaturated fatty acid production. , 1999, Journal of bioscience and bioengineering.

[143]  J. Meyer,et al.  [FeFe] hydrogenases and their evolution: a genomic perspective , 2007, Cellular and Molecular Life Sciences.

[144]  Yuan-Kun Lee Enclosed bioreactors for the mass cultivation of photosynthetic microorganisms: the future trend , 1986 .

[145]  S. Aiba,et al.  Bioenergetic analysis of mixotrophic growth in Chlorella vulgaris and Scenedesmus acutus , 1981 .

[146]  Luciane Maria Colla,et al.  Spirulina platensis Growth in Open Raceway Ponds Using Fresh Water Supplemented with Carbon, Nitrogen and Metal Ions , 2003, Zeitschrift fur Naturforschung. C, Journal of biosciences.

[147]  M. Ghirardi,et al.  Expression of two [Fe]-hydrogenases in Chlamydomonas reinhardtii under anaerobic conditions. , 2003, European journal of biochemistry.

[148]  A. Carvalho,et al.  Microalgal Reactors: A Review of Enclosed System Designs and Performances , 2006, Biotechnology progress.

[149]  K Schulten,et al.  Approaches to developing biological H(2)-photoproducing organisms and processes. , 2005, Biochemical Society transactions.

[150]  J. Myers,et al.  NUTRITION AND GROWTH OF SEVERAL BLUE‐GREEN ALGAE , 1955 .

[151]  Dong-Hoon Kim,et al.  Hydrogenases for biological hydrogen production. , 2011, Bioresource technology.

[152]  J. Weissman,et al.  Photobioreactor design: Mixing, carbon utilization, and oxygen accumulation , 1988, Biotechnology and bioengineering.

[153]  M. Ghirardi,et al.  Oxygen sensitivity of algal H2- production , 1997 .

[154]  Kathleen E. Halvorsen,et al.  Grain and cellulosic ethanol: History, economics, and energy policy , 2007 .

[155]  J. Bartlett,et al.  Green energy from marine algae: biogas production and composition from the anaerobic digestion of Irish seaweed species , 2013, Environmental technology.

[156]  J. Benemann,et al.  Vertical tubular reactor for microalgae cultivation , 1988, Biotechnology Letters.

[157]  H. Gaffron,et al.  The mechanism of hydrogen photoproduction by several algae , 1972, Planta.

[158]  Robin F. Harris,et al.  Determination of the Carbon-Bound Electron Composition of Microbial Cells and Metabolites by Dichromate Oxidation , 1979, Applied and environmental microbiology.

[159]  Suphi S. Oncel,et al.  Microalgae for a macroenergy world , 2013 .

[160]  M. Seibert,et al.  Hydrogen photoproduction by nutrient‐deprived Chlamydomonas reinhardtii cells immobilized within thin alginate films under aerobic and anaerobic conditions , 2009, Biotechnology and bioengineering.

[161]  W. Oswald,et al.  Biological conversion of light energy to the chemical energy of methane. , 1959, Applied microbiology.

[162]  C. Faraloni,et al.  PHENOTYPIC CHARACTERIZATION AND HYDROGEN PRODUCTION IN CHLAMYDOMONAS REINHARDTII QB‐BINDING D1‐PROTEIN MUTANTS UNDER SULFUR STARVATION: CHANGES IN CHL FLUORESCENCE AND PIGMENT COMPOSITION 1 , 2010 .

[163]  Carlos Vaca-Garcia,et al.  Morphology, composition, production, processing and applications of Chlorella vulgaris: A review , 2014 .

[164]  A. Melis,et al.  Development of the light-harvesting chlorophyll antenna in the green alga Chlamydomonas reinhardtii is regulated by the novel Tla1 gene , 2007, Planta.

[165]  M. Calvin The path of carbon in photosynthesis. , 1948, Harvey lectures.

[166]  G. Hays,et al.  Review of climate change impacts on marine aquaculture in the UK and Ireland , 2012 .

[167]  Mario R. Tredici,et al.  Harvest of Arthrospira platensis from Lake Kossorom (Chad) and its household usage among the Kanembu , 2000, Journal of Applied Phycology.

[168]  L. Barsanti,et al.  Algae: Anatomy, Biochemistry, and Biotechnology , 2005 .

[169]  M. D. Hatch,et al.  Photosynthesis by sugar-cane leaves. A new carboxylation reaction and the pathway of sugar formation. , 1966, The Biochemical journal.

[170]  H. GAFFRON,et al.  Reduction of Carbon Dioxide with Molecular Hydrogen in Green Algæ , 1939, Nature.

[171]  K. Shimizu,et al.  Energetics and carbon metabolism during growth of microalgal cells under photoautotrophic, mixotrophic and cyclic light-autotrophic/dark-heterotrophic conditions. , 2000, Biochemical engineering journal.

[172]  John S. Burlew,et al.  Algal culture from laboratory to pilot plant. , 1953 .

[173]  X. Miao,et al.  High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. , 2006, Journal of biotechnology.

[174]  Q. Hu,et al.  Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. , 2008, The Plant journal : for cell and molecular biology.