Technique and tool for symbolic representation and manipulation of stochastic transition systems

We present a new approach to the compact symbolic representation of stochastic transition systems, based on Decision Node BDDs, a novel stochastic extension of BDDs. Parallel composition of components can be performed on the basis of this new data structure. We also discuss symbolic state space reduction by Markovian bisimulation.

[1]  Robin Milner,et al.  Communication and concurrency , 1989, PHI Series in computer science.

[2]  Markus Siegle BDD extensions for stochastic transition systems , 1997 .

[3]  Masahiro Fujita,et al.  Multi-Terminal Binary Decision Diagrams: An Efficient Data Structure for Matrix Representation , 1997, Formal Methods Syst. Des..

[4]  M. Siegle,et al.  Compositional Minimal Semantics for the Stochastic Process Algebra TIPP , 1994 .

[5]  Scott A. Smolka,et al.  CCS expressions, finite state processes, and three problems of equivalence , 1983, PODC '83.

[6]  R. Bryant,et al.  Verification of Arithmetic Functions with Binary Moment Diagrams , 1994 .

[7]  H. Hermanns,et al.  Syntax , Semantics , Equivalences , and Axioms for MTIPP y , 1994 .

[8]  Holger Hermanns,et al.  A Construction and Analysis Tool Based on the Stochastic Process Algebra TIPP , 1996, TACAS.

[9]  Ulrich Herzog,et al.  Stochastic process algebras as a tool for performance and dependability modelling , 1995, Proceedings of 1995 IEEE International Computer Performance and Dependability Symposium.

[10]  C. A. R. Hoare,et al.  Communicating sequential processes , 1978, CACM.

[11]  Enrico Macii,et al.  Markovian analysis of large finite state machines , 1996, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[12]  Edmund M. Clarke,et al.  Symbolic Model Checking: 10^20 States and Beyond , 1990, Inf. Comput..

[13]  Holger Hermanns,et al.  Stochastic Process Algebras - Between LOTOS and Markov Chains , 1998, Comput. Networks.

[14]  E BryantRandal Graph-Based Algorithms for Boolean Function Manipulation , 1986 .

[15]  Randal E. Bryant,et al.  Symbolic Boolean manipulation with ordered binary-decision diagrams , 1992, CSUR.

[16]  Jean-Claude Fernandez,et al.  An Implementation of an Efficient Algorithm for Bisimulation Equivalence , 1990, Sci. Comput. Program..

[17]  Holger Hermanns,et al.  A Stochastic Process Algebra Based Modelling Tool , 1996 .

[18]  Robert de Simone,et al.  Symbolic Bisimulation Minimisation , 1992, CAV.

[19]  H. Andersen An Introduction to Binary Decision Diagrams , 1997 .