Inertial displacement of a domain wall excited by ultra-short circularly polarized laser pulses

Domain wall motion driven by ultra-short laser pulses is a pre-requisite for envisaged low-power spintronics combining storage of information in magnetoelectronic devices with high speed and long distance transmission of information encoded in circularly polarized light. Here we demonstrate the conversion of the circular polarization of incident femtosecond laser pulses into inertial displacement of a domain wall in a ferromagnetic semiconductor. In our study, we combine electrical measurements and magneto-optical imaging of the domain wall displacement with micromagnetic simulations. The optical spin-transfer torque acts over a picosecond recombination time of the spin-polarized photo-carriers that only leads to a deformation of the initial domain wall structure. We show that subsequent depinning and micrometre-distance displacement without an applied magnetic field or any other external stimuli can only occur due to the inertia of the domain wall.

[1]  M. Kläui,et al.  Imaging of domain wall inertia in Permalloy half-ring nanowires by time-resolved photoemission electron microscopy. , 2010, Physical review letters.

[2]  J. Miltat,et al.  Magnetic domain walls displacement: Automotion versus spin-transfer torque , 2010, 1007.5233.

[3]  J. Grollier,et al.  Vertical-current-induced domain-wall motion in MgO-based magnetic tunnel junctions with low current densities , 2011, 1102.2106.

[4]  T. Rasing,et al.  All-optical magnetic recording with circularly polarized light. , 2007, Physical review letters.

[5]  J. Slonczewski,et al.  Magnetic domain walls in bubble materials , 1979 .

[6]  J. Wunderlich,et al.  Optical spin-transfer-torque-driven domain-wall motion in a ferromagnetic semiconductor. , 2014, Physical review letters.

[7]  A. Lemaître,et al.  Steady-state thermal gradient induced by pulsed laser excitation in a ferromagnetic layer , 2016 .

[8]  J. Katine,et al.  Rapid domain wall motion in permalloy nanowires excited by a spin-polarized current applied perpendicular to the nanowire. , 2009, Physical review letters.

[9]  J. Tetienne,et al.  Nanoscale imaging and control of domain-wall hopping with a nitrogen-vacancy center microscope , 2014, Science.

[10]  C. Chappert,et al.  Influence of geometry on domain wall propagation in a mesoscopic wire , 2001 .

[11]  F. Sirotti,et al.  Direct observation of massless domain wall dynamics in nanostripes with perpendicular magnetic anisotropy. , 2012, Physical review letters.

[12]  C. Rettner,et al.  Dynamics of Magnetic Domain Walls Under Their Own Inertia , 2010, Science.

[13]  G. E. Pikus,et al.  Spin Relaxation under Optical Orientation in Semiconductors , 1984 .

[14]  T. Jungwirth,et al.  Experimental observation of the optical spin transfer torque , 2012, Nature Physics.

[15]  J. Wunderlich,et al.  Piezoelectric control of the mobility of a domain wall driven by adiabatic and non-adiabatic torques. , 2013, Nature materials.

[16]  U. Nowak,et al.  Temperature dependence of the current-induced domain wall motion from a modified Landau-Lifshitz-Bloch equation , 2009 .

[17]  W. Williams,et al.  A generalization of the demagnetizing tensor for nonuniform magnetization , 1993 .

[18]  Y. Fainman,et al.  All-optical control of ferromagnetic thin films and nanostructures , 2014, Science.

[19]  A. Fert,et al.  High Domain Wall Velocities due to Spin Currents Perpendicular to the Plane. , 2008, Physical review letters.

[20]  S. Parkin,et al.  Domain-wall velocities of up to 750 m s(-1) driven by exchange-coupling torque in synthetic antiferromagnets. , 2015, Nature nanotechnology.