Long -an dShort-Ter mEffect so fBiologica lHydrogel so nCapsule Microvascula rDensit yaroun dImplant si nRats

Fibrou scapsul eformatio naroun dimplant sca ninhibi tsolut eexchang ebetween implantabl edevice san dth ecirculation .Parylene- ncoate dpolycarbonat edisk ssurrounded wit hgrowt hfacto rreduce dMatrigel t(MG )o rsevera lgelatin-base dmatrice swer eimplanted intramuscularl yint orat sfo r2 1o r5 0days .M Gsupplemente dwit hvascula rendothelial growt hfacto r(VEGF )o rbasi cfibroblas tgrowt hfacto r(bFGF )increase dcapsul emicrovas- cula rdensit ya t2 1day s( p <0.05 )whe ncompare dt obar eparylene-coate dpolycarbonate disk s(control) .Th eincrease dmicrovascula rdensit yaroun dVEGF -an dbFGF-treate dim- plant sregresse db y5 0day san dwa sn olonge rsignificantl ydifferen tfro mcontrols .The microvascula rdensit yinduce db yth egelatin-base dmatrice swa sno tsignificantl ydifferent fro mcontrol sa t2 1days ,bu twa sincrease da t5 0day s( p <0.05) ,suggestin ga slower, long-ter meffect .Disk streate dwit hM Gan dgelatin-base dmatrice sha dthinne rcapsule sa t21 day s( p <0.05) .B y5 0days ,th ecapsul ethicknesse saroun dthes eimplant swer en olonger statisticall ythinne rtha ncontrols .Th ecapsul ethicknes saroun dimplant streate dwit hVEGF, bFGF ,an dessentia lgelatin-base dmatri xwa sthinne rtha ncontrol sa t5 0day s( p <0.05). Thes eresult sindicat etha ti ti spossibl et oincreas efunctiona lmicrovascula rdensit ywithin fibrou scapsule susin gangiogeni cgrowt hfactor san dgelatin-base dmatrices .However ,this effec tma yb eshort-lived ,requirin gchroni cadministratio no fgrowt hfactors . © 200 1Joh nWiley

[1]  W M Reichert,et al.  Engineering the tissue which encapsulates subcutaneous implants. II. Plasma-tissue exchange properties. , 1998, Journal of biomedical materials research.

[2]  R. Gamelli,et al.  Vascular endothelial growth factor mediates angiogenic activity during the proliferative phase of wound healing. , 1998, The American journal of pathology.

[3]  J. Isner,et al.  Mouse model of angiogenesis. , 1998, The American journal of pathology.

[4]  P. Halban,et al.  Vascularization of purified pancreatic islet-like cell aggregates (pseudoislets) after syngeneic transplantation. , 1998, Diabetes.

[5]  W M Reichert,et al.  Engineering the tissue which encapsulates subcutaneous implants. I. Diffusion properties. , 1997, Journal of biomedical materials research.

[6]  R K Jain,et al.  Quantitation and physiological characterization of angiogenic vessels in mice: effect of basic fibroblast growth factor, vascular endothelial growth factor/vascular permeability factor, and host microenvironment. , 1996, The American journal of pathology.

[7]  H. Hahn,et al.  Biocompatibility and Immunology in the Encapsulation of Islets of Langerhans (Bioartificial Pancreas) , 1996, The International journal of artificial organs.

[8]  R. C. Johnson,et al.  Neovascularization of synthetic membranes directed by membrane microarchitecture. , 1995, Journal of biomedical materials research.

[9]  David A. Cheresh,et al.  Definition of Two Angiogenic Pathways by Distinct αv Integrins , 1995, Science.

[10]  J W Eaton,et al.  Inflammatory responses to biomaterials. , 1995, American journal of clinical pathology.

[11]  D. Cheresh,et al.  Requirement of vascular integrin alpha v beta 3 for angiogenesis. , 1994, Science.

[12]  J. Rosenblatt,et al.  Tissue compatibility of collagen-silicone composites in a rat subcutaneous model. , 1992, Journal of biomedical materials research.

[13]  J M Anderson,et al.  Inflammatory response to implants. , 1988, ASAIO transactions.

[14]  G. Ksander Collagen coatings reduce the incidence of capsule contracture around soft silicone rubber implants in animals. , 1988 .

[15]  G. Ksander,et al.  Reduced Capsule Formation Around Soft Silicone Rubber Prostheses Coated with Solid Collagen , 1985, Annals of plastic surgery.

[16]  S. Woodward How Fibroblasts and Giant Cells Encapsulate Implants: Considerations in Design of Glucose Sensors , 1982, Diabetes Care.

[17]  Judah Folkman,et al.  Angiogenesis in vitro , 1980, Nature.

[18]  G A Ksander,et al.  STUDY OF ENCAPSULATION OF SILICONE RUBBER IMPLANTS IN ANIMALS A Foreign‐Body Reaction , 1978, Plastic and reconstructive surgery.

[19]  J. Folkman,et al.  ISOLATION OF A TUMOR FACTOR RESPONSIBLE FOR ANGIOGENESIS , 1971, The Journal of experimental medicine.

[20]  J. Folkman,et al.  Angiogenesis and angiogenesis inhibition: an overview. , 1997, EXS.

[21]  S. Baatout Endothelial differentiation using Matrigel (review). , 1997, Anticancer research.

[22]  R. Padera,et al.  Time course of membrane microarchitecture-driven neovascularization. , 1996, Biomaterials.

[23]  James M. Anderson Inflammation and the foreign body response , 1994 .

[24]  T. Tuan,et al.  Cellular responses to silicone and polyurethane prosthetic surfaces. , 1993, The Journal of surgical research.

[25]  A. Passaniti,et al.  A simple, quantitative method for assessing angiogenesis and antiangiogenic agents using reconstituted basement membrane, heparin, and fibroblast growth factor. , 1992, Laboratory investigation; a journal of technical methods and pathology.