Diffuse interface model for compressible fluid - Compressible elastic-plastic solid interaction
暂无分享,去创建一个
[1] David H. Sharp,et al. Two-phase modelling of a fluid mixing layer , 1999, Journal of Fluid Mechanics.
[2] H. S. Udaykumar,et al. An Eulerian method for computation of multimaterial impact with ENO shock-capturing and sharp interfaces , 2003 .
[3] Richard Saurel,et al. Shock jump relations for multiphase mixtures with stiff mechanical relaxation , 2007 .
[4] Richard Saurel,et al. Solid-fluid diffuse interface model in cases of extreme deformations , 2009, J. Comput. Phys..
[5] Richard Saurel,et al. A multiphase model with internal degrees of freedom: application to shock–bubble interaction , 2003, Journal of Fluid Mechanics.
[6] M. Ortiz,et al. Adaptive Lagrangian modelling of ballistic penetration of metallic targets , 1997 .
[7] Richard Saurel,et al. A relaxation-projection method for compressible flows. Part I: The numerical equation of state for the Euler equations , 2007, J. Comput. Phys..
[8] Nicolas Favrie,et al. Dynamics of shock waves in elastic-plastic solids , 2011 .
[9] Mark L. Wilkins,et al. Impact of cylinders on a rigid boundary , 1973 .
[10] Smadar Karni,et al. Multicomponent Flow Calculations by a Consistent Primitive Algorithm , 1994 .
[11] Geoffrey Ingram Taylor,et al. The use of flat-ended projectiles for determining dynamic yield stress I. Theoretical considerations , 1948, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[12] M. Wilkins. Calculation of Elastic-Plastic Flow , 1963 .
[13] Richard Saurel,et al. A relaxation-projection method for compressible flows. Part II: Artificial heat exchanges for multiphase shocks , 2007, J. Comput. Phys..
[14] E. Toro,et al. Restoration of the contact surface in the HLL-Riemann solver , 1994 .
[15] Richard Saurel,et al. Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures , 2009, J. Comput. Phys..
[16] William G. Proud,et al. Symmetrical Taylor impact studies of copper , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[17] R. Abgrall,et al. A Multiphase Godunov Method for Compressible Multifluid and Multiphase Flows , 1999 .
[18] B. V. Leer,et al. Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection , 1977 .
[19] S. K. Godunov,et al. Elements of continuum mechanics , 1978 .
[20] Rémi Abgrall,et al. Computations of compressible multifluids , 2001 .
[21] R. Abgrall. How to Prevent Pressure Oscillations in Multicomponent Flow Calculations , 1996 .
[22] Bruno Després,et al. Weak solutions to Friedrichs systems with convex constraints , 2011 .
[23] E. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .
[24] B. V. Leer,et al. Towards the Ultimate Conservative Difference Scheme , 1997 .
[25] Richard Saurel,et al. Modelling wave dynamics of compressible elastic materials , 2008, J. Comput. Phys..
[26] S. Godunov,et al. Elements of Continuum Mechanics and Conservation Laws , 2003, Springer US.
[27] S. F. Davis. Simplified second-order Godunov-type methods , 1988 .
[28] Bruno Després,et al. Perfect plasticity and hyperelastic models for isotropic materials , 2008 .
[29] Ilya Peshkov,et al. Thermodynamically consistent nonlinear model of elastoplastic Maxwell medium , 2010 .
[30] S. Gavrilyuk,et al. Mathematical and numerical model for nonlinear viscoplasticity , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[31] Phillip Colella,et al. A high-order Eulerian Godunov method for elastic-plastic flow in solids , 2001 .
[32] M. Baer,et al. A two-phase mixture theory for the deflagration-to-detonation transition (ddt) in reactive granular materials , 1986 .
[33] Charbel Farhat,et al. A higher-order generalized ghost fluid method for the poor for the three-dimensional two-phase flow computation of underwater implosions , 2008, J. Comput. Phys..