Publishing statistical models: Getting the most out of particle physics experiments

The statistical models used to derive the results of experimental analyses are of incredible scientific value and are essential information for analysis preservation and reuse. In this paper, we make the scientific case for systematically publishing the full statistical models and discuss the technical developments that make this practical. By means of a variety of physics cases - including parton distribution functions, Higgs boson measurements, effective field theory interpretations, direct searches for new physics, heavy flavor physics, direct dark matter detection, world averages, and beyond the Standard Model global fits - we illustrate how detailed information on the statistical modelling can enhance the short- and long-term impact of experimental results.

[1]  S. M. Etesami,et al.  Analysis of the CP structure of the Yukawa coupling between the Higgs boson and τ leptons in proton-proton collisions at $$ \sqrt{s} $$ = 13 TeV , 2022, Journal of High Energy Physics.

[2]  A. Buras On the Standard Model Predictions for Rare K and B Decay Branching Ratios: 2022 , 2022, 2205.01118.

[3]  Hanfei Ye,et al.  Search for heavy Higgs bosons decaying into two tau leptons with the ATLAS detector using pp collisions at sqrt(s) = 13 TeV , 2022, Proceedings of The European Physical Society Conference on High Energy Physics — PoS(EPS-HEP2021).

[4]  C. Schwanenberger,et al.  Possible indications for new Higgs bosons in the reach of the LHC: N2HDM and NMSSM interpretations , 2021, The European Physical Journal C.

[5]  E. Arganda,et al.  Interpretation of LHC excesses in ditop and ditau channels as a 400-GeV pseudoscalar resonance , 2021, Journal of High Energy Physics.

[6]  R. Lang,et al.  Recommended conventions for reporting results from direct dark matter searches , 2021, The European Physical Journal C.

[7]  P. Urquijo,et al.  Revisiting fits to B0→D*−ℓ+νℓ to measure |Vcb| with novel methods and preliminary LQCD data at nonzero recoil , 2021 .

[8]  Salvatore La Cagnina,et al.  BAT.jl: A Julia-Based Tool for Bayesian Inference , 2021, SN Computer Science.

[9]  J. Rojo,et al.  Parton distributions in the SMEFT from high-energy Drell-Yan tails , 2021, Journal of High Energy Physics.

[10]  F. Richard Global interpretation of LHC indications within the Georgi-Machacek Higgs model , 2021, 2103.12639.

[11]  Giordon Stark,et al.  pyhf: pure-Python implementation of HistFactory statistical models , 2021, J. Open Source Softw..

[12]  M. Ciuchini,et al.  Lessons from the B0,+→K*0,+μ+μ− angular analyses , 2021, Physical Review D.

[13]  S. Westhoff,et al.  The flavor of UV physics , 2021, Journal of High Energy Physics.

[14]  W. Waltenberger,et al.  Artificial proto-modelling: building precursors of a next standard model from simplified model results , 2020, Journal of High Energy Physics.

[15]  P. Bechtle,et al.  HiggsSignals-2: probing new physics with precision Higgs measurements in the LHC 13 TeV era , 2020, The European Physical Journal C.

[16]  Charanjit K. Khosa,et al.  New developments in SModelS , 2020, Proceedings of Tools for High Energy Physics and Cosmology — PoS(TOOLS2020).

[17]  Alan D. Martin,et al.  Parton distributions from LHC, HERA, Tevatron and fixed target data: MSHT20 PDFs , 2020, The European Physical Journal C.

[18]  J. Ellis,et al.  Top, Higgs, diboson and electroweak fit to the Standard Model effective field theory , 2020, Journal of High Energy Physics.

[19]  J. Huston,et al.  An exploratory study of the impact of CMS double-differential top distributions on the gluon parton distribution function , 2020 .

[20]  Atlas Collaboration Search for trilepton resonances from chargino and neutralino pair production in $\sqrt{s}$ = 13 TeV $pp$ collisions with the ATLAS detector , 2020, 2011.10543.

[21]  K. Cranmer,et al.  Simulation-Based Inference Methods for Particle Physics , 2020, Artificial Intelligence for High Energy Physics.

[22]  Robert D. Cousins,et al.  What is the likelihood function, and how is it used in particle physics? , 2020, 2010.00356.

[23]  M. White,et al.  Strengthening the bound on the mass of the lightest neutrino with terrestrial and cosmological experiments , 2020, 2009.03287.

[24]  Sabine Kraml,et al.  A SModelS interface for pyhf likelihoods , 2020, Comput. Phys. Commun..

[25]  J. Rojo,et al.  The strangest proton? , 2020, The European Physical Journal C.

[26]  E. Bouhova-Thacker,et al.  Search for direct production of electroweakinos in final states with one lepton, missing transverse momentum and a Higgs boson decaying into two b-jets in pp collisions at √s=13 TeV with the ATLAS detector:European Physical Journal C , 2020 .

[27]  S. Meloni,et al.  RooHammerModel: interfacing the HAMMER software tool with the HistFactory package , 2020 .

[28]  A. Wulzer,et al.  Parametrized classifiers for optimal EFT sensitivity , 2020, Journal of High Energy Physics.

[29]  J. Katzy,et al.  Indirect $$ \mathcal{CP} $$ probes of the Higgs-top-quark interaction: current LHC constraints and future opportunities , 2020, Journal of High Energy Physics.

[30]  M. White,et al.  Global fits of axion-like particles to XENON1T and astrophysical data , 2020, Journal of High Energy Physics.

[31]  M. Bonvini Probabilistic definition of the perturbative theoretical uncertainty from missing higher orders , 2020, The European Physical Journal C.

[32]  J. Rojo,et al.  nNNPDF2.0: quark flavor separation in nuclei from LHC data , 2020, Journal of High Energy Physics.

[33]  Amal K. Ghosh,et al.  Search for new non-resonant phenomena in high-mass dilepton final states with the ATLAS detector , 2020, Journal of High Energy Physics.

[34]  P. Bechtle,et al.  HiggsBounds-5: testing Higgs sectors in the LHC 13 TeV Era , 2020, The European Physical Journal C.

[35]  S. Forte,et al.  Phenomenology of NNLO jet production at the LHC and its impact on parton distributions , 2020, The European Physical Journal C.

[36]  Christian P. Robert,et al.  Computing Bayes: Bayesian Computation from 1763 to the 21st Century , 2020, 2004.06425.

[37]  M. D. Pietra,et al.  Higgs boson production cross-section measurements and their EFT interpretation in the $4\ell $ decay channel at $\sqrt{s}=$13 TeV with the ATLAS detector , 2020, 2004.03447.

[38]  E. Tassi,et al.  Study of proton parton distribution functions at high x using ZEUS data , 2020, Physical Review D.

[39]  David W. Miller,et al.  Reinterpretation of LHC Results for New Physics: Status and recommendations after Run 2 , 2020, SciPost Physics.

[40]  F. Richard Evidences for a pseudo scalar resonance at 400 GeV Possible interpretations , 2020, 2003.07112.

[41]  Zoltan Ligeti,et al.  Das ist der HAMMER: consistent new physics interpretations of semileptonic decays , 2020, The European Physical Journal C.

[42]  E. Nocera,et al.  Parton Distributions in Nucleons and Nuclei , 2020, Annual Review of Nuclear and Particle Science.

[43]  J. Huston,et al.  New CTEQ global analysis of quantum chromodynamics with high-precision data from the LHC , 2019, 1912.10053.

[44]  Atlas Collaboration Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in √s = 13 TeV pp collisions with the ATLAS detector , 2019, 1912.08479.

[45]  Hoang Dai Nghia Nguyen,et al.  Search for bottom-squark pair production with the ATLAS detector in final states containing Higgs bosons, $b$-jets and missing transverse momentum , 2019 .

[46]  Atlas Collaboration Search for direct stau production in events with two hadronic $\tau$-leptons in $\sqrt{s} = 13$ TeV $pp$ collisions with the ATLAS detector , 2019, 1911.06660.

[47]  M. Pierini,et al.  The DNNLikelihood: enhancing likelihood distribution with Deep Learning , 2019, The European Physical Journal C.

[48]  Gilles Louppe,et al.  The frontier of simulation-based inference , 2019, Proceedings of the National Academy of Sciences.

[49]  M. Pierini,et al.  HEPfit: a code for the combination of indirect and direct constraints on high energy physics models , 2019, The European Physical Journal C.

[50]  N. Serra,et al.  zfit: Scalable pythonic fitting , 2019, SoftwareX.

[51]  T. Plehn,et al.  O new physics, where art thou? A global search in the top sector , 2019, Journal of High Energy Physics.

[52]  T. Kuhr,et al.  Averages of b-hadron, c-hadron, and $$\tau $$-lepton properties as of 2018 , 2019, The European Physical Journal C.

[53]  L. Harland-Lang,et al.  Differential top quark pair production at the LHC: Challenges for PDF fits , 2019, The European Physical Journal C.

[54]  Atlas Collaboration Search for direct production of electroweakinos in final states with one lepton, missing transverse momentum and a Higgs boson decaying into two $b$-jets in (pp) collisions at $\sqrt{s}=13$ TeV with the ATLAS detector , 2019, 1909.09226.

[55]  Lan V. Truong,et al.  Search for squarks and gluinos in final states with same-sign leptons and jets using 139 fb−1 of data collected with the ATLAS detector , 2019, Journal of High Energy Physics.

[56]  Hoang Dai Nghia Nguyen,et al.  Combined measurements of Higgs boson production and decay using up to $80$ fb$^{-1}$ of proton-proton collision data at $\sqrt{s}=$ 13 TeV collected with the ATLAS experiment , 2019, 1909.02845.

[57]  Sabine Kraml,et al.  Constraining new physics from Higgs measurements with Lilith: update to LHC Run 2 results , 2019, SciPost Physics.

[58]  V. C. Antochi,et al.  Light Dark Matter Search with Ionization Signals in XENON1T. , 2019, Physical Review Letters.

[59]  K. Cranmer,et al.  MadMiner: Machine Learning-Based Inference for Particle Physics , 2019, Computing and Software for Big Science.

[60]  Richard D. Ball,et al.  Parton distributions with theory uncertainties: general formalism and first phenomenological studies , 2019, The European Physical Journal C.

[61]  Jack Y. Araz,et al.  Les Houches 2019 Physics at TeV Colliders: New Physics Working Group Report , 2019, 2002.12220.

[62]  C. Pagliarone,et al.  Description of CRESST-III Data , 2019, 1905.07335.

[63]  J. Rojo,et al.  Can New Physics Hide inside the Proton? , 2019, Physical review letters.

[64]  Jonathan M. Cornell,et al.  Combined collider constraints on neutralinos and charginos , 2019, The European Physical Journal C.

[65]  C. Pagliarone,et al.  First results from the CRESST-III low-mass dark matter program , 2019, Physical Review D.

[66]  Nicola De Filippis,et al.  Higgs Physics at the HL-LHC and HE-LHC , 2019, 1902.00134.

[67]  F. Maltoni,et al.  A Monte Carlo global analysis of the Standard Model Effective Field Theory: the top quark sector , 2019, Journal of High Energy Physics.

[68]  S. Burdin,et al.  Results of a Search for Sub-GeV Dark Matter Using 2013 LUX Data. , 2018, Physical review letters.

[69]  R. Thorne,et al.  On the consistent use of scale variations in PDF fits and predictions , 2018, The European Physical Journal C.

[70]  K. Cranmer,et al.  Open is not enough , 2018, Nature Physics.

[71]  David M. Straub,et al.  flavio: a Python package for flavour and precision phenomenology in the Standard Model and beyond , 2018, 1810.08132.

[72]  G. Cowan Statistical models with uncertain error parameters , 2018, The European Physical Journal C.

[73]  Andy Buckley,et al.  The simplified likelihood framework , 2018, Journal of High Energy Physics.

[74]  Jonathan M. Cornell,et al.  Combined collider constraints on neutralinos and charginos , 2018, The European Physical Journal C.

[75]  V. M. Ghete,et al.  Measurements of properties of the Higgs boson decaying to a W boson pair in pp collisions at $\sqrt{s} = $ 13 TeV , 2018 .

[76]  Gilles Louppe,et al.  Constraining Effective Field Theories with Machine Learning. , 2018, Physical review letters.

[77]  T. R. Fernandez Perez Tomei,et al.  Search for additional neutral MSSM Higgs bosons in the τ τ final state in proton-proton collisions at s=13$$ \sqrt{s}=13 $$ TeV , 2018, Journal of High Energy Physics.

[78]  M. Xiao,et al.  Constraining Dark Matter Models with a Light Mediator at the PandaX-II Experiment. , 2018, Physical review letters.

[79]  A. S. Mete,et al.  Measurement of the W-boson mass in pp collisions at s=7TeV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s}=7\, , 2018, The European Physical Journal C.

[80]  Alan D. Martin,et al.  The impact of LHC jet data on the MMHT PDF fit at NNLO , 2017, The European Physical Journal C.

[81]  F. Mahmoudi,et al.  Direct determination of Wilson coefficients using B0 → K∗0μ+μ− decays , 2017, Journal of High Energy Physics.

[82]  Jun Gao,et al.  The Structure of the Proton in the LHC Precision Era , 2017, 1709.04922.

[83]  F. Bernlochner,et al.  Tensions and correlations in |V c b | determinations , 2017, 1708.07134.

[84]  J. Rojo,et al.  A determination of the fragmentation functions of pions, kaons, and protons with faithful uncertainties , 2017, The European Physical Journal C.

[85]  Atlas Collaboration Measurement of the inclusive jet cross-sections in proton-proton collisions at √s=8 TeV with the ATLAS detector , 2017, 1706.03192.

[86]  C. Rogan,et al.  FlavBit: a GAMBIT module for computing flavour observables and likelihoods , 2017, The European Physical Journal C.

[87]  Jonathan M. Cornell,et al.  GAMBIT: the global and modular beyond-the-standard-model inference tool , 2017, The European Physical Journal C.

[88]  J. Conrad,et al.  Comparison of statistical sampling methods with ScannerBit, the GAMBIT scanning module , 2017, The European Physical Journal C.

[89]  Lukas Heinrich,et al.  HEPData: a repository for high energy physics data , 2017, ArXiv.

[90]  S. Schacht,et al.  A fresh look at the determination of | V cb | from B → D ⁎ lν , 2017, 1703.06124.

[91]  K. Eskola,et al.  EPPS16: nuclear parton distributions with LHC data , 2016, The European physical journal. C, Particles and fields.

[92]  M. Bordone,et al.  On the Standard Model prediction for RK and RK* , 2016 .

[93]  A. Mitov,et al.  Pinning down the large-x gluon with NNLO top-quark pair differential distributions , 2016, Journal of High Energy Physics.

[94]  M. Kelsey,et al.  Measurement of the CKM angle γ from a combination of LHCb results , 2016, Journal of High Energy Physics.

[95]  S. M. Etesami,et al.  Phenomenological MSSM interpretation of CMS searches in pp collisions at s=7$$ \sqrt{s}=7 $$ and 8 TeV , 2016, 1606.03577.

[96]  Andrei,et al.  Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at √s = 7 and 8 TeV , 2016, 1606.02266.

[97]  G. Isidori,et al.  On the standard model predictions for $$R_K$$RK and $$R_{K^*}$$RK∗ , 2016, 1605.07633.

[98]  Karsten Koeneke,et al.  A morphing technique for signal modelling in a multidimensional space of coupling parameters , 2016 .

[99]  Erik Schultes,et al.  The FAIR Guiding Principles for scientific data management and stewardship , 2016, Scientific Data.

[100]  J. T. Childers,et al.  Measurements of the Higgs boson production and decay rates and coupling strengths using pp$$\sqrt{s}=7$$= , 2016 .

[101]  J. Rojo,et al.  NLO+NLL squark and gluino production cross sections with threshold-improved parton distributions , 2015, The European Physical Journal C.

[102]  A. S. Mete,et al.  Summary of the ATLAS experiment’s sensitivity to supersymmetry after LHC Run 1 — interpreted in the phenomenological MSSM , 2015, Journal of High Energy Physics.

[103]  P. Bechtle,et al.  Killing the cMSSM softly , 2015, The European Physical Journal C.

[104]  Pedro Antonio Gutiérrez,et al.  Measurements of the Higgs boson production and decay rates and coupling strengths using pp collision data at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\o , 2015, The European Physical Journal C.

[105]  J. Huston,et al.  The PDF4LHC report on PDFs and LHC data: Results from Run I and preparation for Run II , 2015, 1507.00556.

[106]  A. Lasenby,et al.  polychord: next-generation nested sampling , 2015, 1506.00171.

[107]  S. M. Etesami,et al.  Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy , 2015, The European Physical Journal C.

[108]  Cms Collaborations,et al.  Combined Measurement of the Higgs Boson Mass in $pp$ Collisions at $\sqrt{s}=7$ and 8 TeV with the ATLAS and CMS Experiments , 2015, 1503.07589.

[109]  J. Chiang,et al.  Searching for Dark Matter Annihilation from Milky Way Dwarf Spheroidal Galaxies with Six Years of Fermi Large Area Telescope Data. , 2015, Physical review letters.

[110]  J. Latorre,et al.  Parton distributions for the LHC run II , 2014, 1410.8849.

[111]  M. Baak,et al.  HistFitter software framework for statistical data analysis , 2014, 1410.1280.

[112]  Wolfgang von der Linden,et al.  Bayesian Probability Theory: Applications in the Physical Sciences , 2014 .

[113]  D. Hooper,et al.  The characterization of the gamma-ray signal from the central Milky Way: A case for annihilating dark matter , 2014, 1402.6703.

[114]  K. Cranmer,et al.  Decoupling Theoretical Uncertainties from Measurements of the Higgs Boson , 2013, 1401.0080.

[115]  W. Waltenberger,et al.  SModelS: a tool for interpreting simplified-model results from the LHC and its application to supersymmetry , 2013, 1312.4175.

[116]  Oscar Stål,et al.  HiggsSignals: Confronting arbitrary Higgs sectors with measurements at the Tevatron and the LHC , 2013, 1305.1933.

[117]  Mark Nottingham,et al.  JavaScript Object Notation (JSON) Patch , 2013, RFC.

[118]  D. Collaborations,et al.  Higgs Boson Studies at the Tevatron , 2013, 1303.6346.

[119]  J. Huston,et al.  Parton distribution benchmarking with LHC data , 2012, 1211.5142.

[120]  Vlasios Vasileiou,et al.  THE FERMI LARGE AREA TELESCOPE ON ORBIT: EVENT CLASSIFICATION, INSTRUMENT RESPONSE FUNCTIONS, AND CALIBRATION , 2012 .

[121]  M. Kadastik,et al.  Searches for new physics: Les Houches recommendations for the presentation of LHC results , 2012, 1203.2489.

[122]  T Glanzman,et al.  Constraining dark matter models from a combined analysis of Milky Way satellites with the Fermi Large Area Telescope. , 2011, Physical review letters.

[123]  A. Geringer-Sameth,et al.  Exclusion of canonical weakly interacting massive particles by joint analysis of Milky Way dwarf galaxies with data from the Fermi Gamma-Ray Space Telescope. , 2011, Physical review letters.

[124]  Alfio Lazzaro,et al.  The RooStats Project , 2010, 1009.1003.

[125]  K. Cranmer,et al.  Asymptotic formulae for likelihood-based tests of new physics , 2010, 1007.1727.

[126]  H. Prosper,et al.  Reference priors for high energy physics , 2010, 1002.1111.

[127]  J. Latorre,et al.  Fitting parton distribution data with multiplicative normalization uncertainties , 2009, 0912.2276.

[128]  CNRSIN2p3,et al.  Direct constraints on minimal supersymmetry from Fermi-LAT observations of the dwarf galaxy Segue 1 , 2009, 0909.3300.

[129]  Farvah Mahmoudi,et al.  SuperIso v3.0, flavor physics observables calculations: extension to NMSSM , 2009, Comput. Phys. Commun..

[130]  A. Roeck,et al.  Likelihood functions for supersymmetric observables in frequentist analyses of the CMSSM and NUHM1 , 2009, 0907.5568.

[131]  F. Feroz,et al.  Fitting the Phenomenological MSSM , 2009, 0904.2548.

[132]  J. Chiang,et al.  THE LARGE AREA TELESCOPE ON THE FERMI GAMMA-RAY SPACE TELESCOPE MISSION , 2009, 0902.1089.

[133]  F. Feroz,et al.  The impact of priors and observables on parameter inferences in the constrained MSSM , 2008, 0809.3792.

[134]  A. Roeck,et al.  Predictions for supersymmetric particle masses using indirect experimental and cosmological constraints , 2008, 0808.4128.

[135]  Farvah Mahmoudi,et al.  SuperIso v2.3: A program for calculating flavor physics observables in supersymmetry , 2008, Comput. Phys. Commun..

[136]  Farvah Mahmoudi,et al.  SuperIso: A program for calculating the isospin asymmetry of B -> K*gamma in the MSSM , 2007, Comput. Phys. Commun..

[137]  R. S. Thorne,et al.  Parton distributions for the LHC , 2007, 0901.0002.

[138]  R. Trotta,et al.  Implications for the Constrained MSSM from a new prediction for b to s gamma , 2007, 0705.2012.

[139]  C. Lester,et al.  Natural priors, CMSSM fits and LHC weather forecasts , 2007, 0705.0487.

[140]  R. Trotta,et al.  A Markov chain Monte Carlo analysis of the CMSSM , 2006, hep-ph/0602028.

[141]  B. Allanach Naturalness priors and fits to the constrained minimal supersymmetric Standard Model , 2006, hep-ph/0601089.

[142]  C. Lester,et al.  Multidimensional mSUGRA likelihood maps , 2005, hep-ph/0507283.

[143]  P. Bechtle,et al.  Fittino, a program for determining MSSM parameters from collider observables using an iterative method , 2004, Comput. Phys. Commun..

[144]  S. Heinemeyer,et al.  Indirect sensitivities to the scale of supersymmetry , 2004, hep-ph/0411216.

[145]  Stefano Profumo,et al.  Statistical analysis of supersymmetric dark matter in the minimal supersymmetric standard model after WMAP , 2004 .

[146]  S. Profumo,et al.  A Statistical Analysis of Supersymmetric Dark Matter in the MSSM after WMAP , 2004, hep-ph/0407036.

[147]  R. Barlow Asymmetric statistical errors , 2004, physics/0406120.

[148]  J. Ellis,et al.  Likelihood analysis of the constrained minimal supersymmetric standard model parameter space , 2003, hep-ph/0310356.

[149]  W. Verkerke,et al.  The RooFit Toolkit for Data Modeling , 2003, physics/0306116.

[150]  S. Yellin Finding an Upper Limit in the Presence of Unknown Background , 2002, physics/0203002.

[151]  Delphi collaboration,et al.  Search for the Standard Model Higgs Boson at LEP , 2001, hep-ex/0107029.

[152]  W. Jason Owen,et al.  Statistical Data Analysis , 2000, Technometrics.

[153]  G. D'Agostini Sceptical combination of experimental results: General considerations and application to epsilon-prime/epsilon , 1999, hep-ex/9910036.

[154]  I. Caprini,et al.  Dispersive bounds on the shape of anti-B ---> D(*) lepton anti-neutrino form-factors , 1997 .

[155]  I. Caprini,et al.  Improved Bounds for the Slope and Curvature of $\bar B\to D^{(*)}\ell\bar\nu$ Form Factors , 1996, hep-ph/9603414.

[156]  M. R. Whalley,et al.  The Durham-RAL high-energy physics databases: HEPDATA , 1989 .

[157]  F. James Statistical Methods in Experimental Physics , 1973 .

[158]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[159]  S. S. Wilks The Large-Sample Distribution of the Likelihood Ratio for Testing Composite Hypotheses , 1938 .

[160]  G. Aad,et al.  Search For Displaced Leptons in √ s = 13 . 6 TeV pp Collisions with the ATLAS Detector , 2021 .

[161]  Arnulf Quadt,et al.  Oxford University Press : Review of Particle Physics, 2020-2021 , 2020 .

[162]  Jonathan M. Cornell,et al.  Simple and statistically sound strategies for analysing physical theories , 2020 .

[163]  M. Birman,et al.  Combined measurements of Higgs boson production and decay using up to 80 fb-1 of proton-proton collision data at s =13 TeV collected with the ATLAS experiment , 2020 .

[164]  X. Gao,et al.  Measurements of properties of the Higgs boson decaying to a W boson pair in pp collisions at , 2019 .

[165]  M. D. Pietra,et al.  Search for squarks and gluinos in final states with jets and missing transverse momentum using 36fb1 of s=13TeV pp collision data with the ATLAS detector , 2018 .

[166]  Simplified likelihood for the re-interpretation of public CMS results , 2017 .

[167]  Dante Bigi,et al.  Revisiting B ! D' , 2016 .

[168]  G. Besjes,et al.  Corrigendum to “Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC” [Phys. Lett. B 726 (1–3) (2013) 88] , 2014 .

[169]  J. T. Childers,et al.  UvA-DARE (Digital Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC , 2013 .

[170]  K. Cranmer,et al.  HistFactory: A tool for creating statistical models for use with RooFit and RooStats , 2012 .

[171]  J. Grossman The Likelihood Principle , 2011 .

[172]  J. Conrad,et al.  likelihood analysis of the constrained MSSM with genetic algorithms , 2010 .

[173]  Wounter Verkerke,et al.  Statistical Software for the LHC , 2008 .

[174]  L. Roszkowski Implications for the Constrained MSSM from a new prediction for b → sγ , 2008 .

[175]  E. Baltz,et al.  Preprint typeset in JHEP style- PAPER VERSION Markov Chain Monte Carlo Exploration of Minimal Supergravity with Implications for Dark Matter , 2004 .

[176]  B. Olshausen Bayesian probability theory , 2004 .

[177]  Joseph B. Kadane,et al.  What is the Likelihood Function , 1988 .