The dynamics of cognition: An ACT-R model of cognitive arithmetic

ZusammenfassungForschungsarbeiten zur Kognitiven A-rithmetik untersuchen die mentale Repräsentation von Zah-len und arithmetischen Fakten sowie die kognitiven Prozesse die diese generieren, abrufen und manipulieren. Das Span-nungsfeld zwischen der scheinbar einfachen formalen Struk-tur dieses Aufgabenbereichs und den Schwierigkeiten, die Kinder bei seiner Bewaltigung haben, stellt einen einzigarti-gen Zugang zum Studium kognitiver Prozesse dar. Der vor-liegende Beitrag präsentiert einen Erklärungsansatz der zen-tralen Befunde des Forschungsgebietes auf der Grundlage ei-nes ACT-R Modells zur Lebenszeit-Simulation des Erwerbs arithmetischen Wissens. Die Anwendung der Bayesischen Lernmechanismen der ACT-R Architektur zeigen auf, wie sich diese Befunde auf die statistische Struktur des Aufga-bengebiets zurückführen lassen. Aus den präzisen Vorher-sagen der Simulation werden sowohl Hinweise zur Vermitt-lung arithmetischen Wissens abgeleitet als auch Erkenntnisse über die Architektur ACT-R selbst gewonnen. Im Rahmen einer formalen Analyse wird gezeigt, daß sich die vorge-stellte Simulation als dynamisches System betrachten läßt, dessen Lernergebnis unmittelbar von Parametern der Archi-tektur abhangt. Eine Untersuchung der Sensitivität der Parameter der Simulation belegt, daß die Werte, die zur besten Anpassung an die empirischen Daten fiihren, auch eine in einer optimalen Performanz resultieren. Die Implikationen dieses Ergebnis für die grundlegende Adaptivität menschli-cher Kognition werden diskutiert.AbstractCognitive arithmetic studies the mental representation of numbers and arithmetic facts and the processes that create, access, and manipulate them. The contradiction between the apparent straightforwardness of its exact formal structure and the difficulties that every child faces in mastering it provides an important window into human cognition. An ACT-R model is proposed which accounts for the central results of the field through a single simulation of a lifetime of arithmetic learning. The use of the architecture’s Bayesian learning mechanisms explains how these effects arise from the statistics of the task. Because of the precise predictions of the simulation, a number of lessons are derived concerning the teaching of arithmetic and the ACT-R architecture itself. A formal analysis establishes that the simulation can be viewed as a dynamical system whose ultimate learning outcome is fundamentally dependent upon some architectural parameters. Finally, an empirical study of the sensitivity of the simulation to its parameters determines that the values that yield the best fit to the data also provide optimal performance. The implications of these findings for the fundamental adaptivity of human cognition are discussed.

[1]  Bruce J. West,et al.  Complexity, organization and uncertainty , 1987 .

[2]  Donald Geman,et al.  Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1984 .

[3]  Geoffrey E. Hinton,et al.  A Learning Algorithm for Boltzmann Machines , 1985, Cogn. Sci..

[4]  A. Miyake,et al.  Models of Working Memory: Mechanisms of Active Maintenance and Executive Control , 1999 .

[5]  Jeffrey Bisanz,et al.  Selection of Procedures in Mental Addition: Reassessing the Problem Size Effect in Adults , 1996 .

[6]  Mark H. Ashcraft,et al.  Cognitive Psychology and Simple Arithmetic: A Review and Summary of New Directions. , 1995 .

[7]  G. Groen,et al.  A chronometric analysis of simple addition. , 1972 .

[8]  R. Duncan Luce,et al.  Individual Choice Behavior: A Theoretical Analysis , 1979 .

[9]  Janet A. Schmidt,et al.  Associative confusions in mental arithmetic , 1974 .

[10]  C. Lebiere,et al.  Models of Working Memory: Modeling Working Memory in a Unified Architecture: An ACT-R Perspective , 1999 .

[11]  David C. Geary,et al.  The Problem-size Effect in Mental Addition: Developmental and Cross-national Trends , 1996 .

[12]  L. Reder Implicit memory and metacognition , 1996 .

[13]  Mark H. Ashcraft,et al.  Textbook Presentations of the Basic Addition Facts , 1986 .

[14]  John R. Anderson,et al.  Working Memory: Activation Limitations on Retrieval , 1996, Cognitive Psychology.

[15]  Robert S. Cohen,et al.  On Scientific Discovery , 1981 .

[16]  Jeffrey Bisanz,et al.  Multiple routes to solution of single-digit multiplication problems. , 1996 .

[17]  M. McCloskey,et al.  Chapter 10 Mathnet: Preliminary Results From A Distributed Model Of Arithmetic Fact Retrieval , 1992 .

[18]  L. Reder Strategy selection in question answering , 1987, Cognitive Psychology.

[19]  CL. ASSIFICATION,et al.  An instructable connectionist / control architecture : Using rule-based instructions to accomplish connectionist learning in a human time scale , 2022 .

[20]  G. Logan Toward an instance theory of automatization. , 1988 .

[21]  R. Siegler,et al.  Strategy choice procedures and the development of multiplication skill. , 1988, Journal of experimental psychology. General.

[22]  Thomas G. Dietterich What is machine learning? , 2020, Archives of Disease in Childhood.

[23]  Mark H. Ashcraft,et al.  Children’s Knowledge of Simple Arithmetic: A Developmental Model and Simulation , 1987 .

[24]  Emile Servan-Schreiber,et al.  The competitive chunking theory: models of perception, learning, and memory , 1991 .

[25]  Robert S. Siegler,et al.  The Development of Numerical Understandings , 1982 .

[26]  T. Gelder,et al.  The dynamical hypothesis in cognitive science , 1998, Behavioral and Brain Sciences.

[27]  John R. Anderson,et al.  The fan effect: New results and new theories. , 1999 .

[28]  Jamie I. D. Campbell,et al.  Conditions of error priming in number-fact retrieval , 1991, Memory & cognition.

[29]  M. Perlmutter,et al.  Cognitive arithmetic: comparison of operations. , 1984, Journal of experimental psychology. Learning, memory, and cognition.

[30]  Mark H. Ashcraft,et al.  Simple and complex mental addition across development , 1985 .

[31]  R. A. Raimi The First Digit Problem , 1976 .

[32]  Susan R. Goldman,et al.  Extended Practice of Basic Addition Facts: Strategy Changes in Learning-Disabled Students , 1988 .

[33]  W. K. Estes,et al.  All-or-none processes in learning and retention. , 1964 .

[34]  C. Lebiere,et al.  The Atomic Components of Thought , 1998 .

[35]  Dieter Wallach Example-based models of control problems , 1996 .

[36]  Mark H. Ashcraft,et al.  THE FREQUENCY OF ARITHMETIC FACTS IN ELEMENTARY TEXTS: ADDITION AND MULTIPLICATION IN GRADES 1-6 , 1995 .

[37]  R. Luce,et al.  Individual Choice Behavior: A Theoretical Analysis. , 1960 .

[38]  Giacomo Mauro DAriano Advances in child development and behavior. , 1991, Advances in child development and behavior.

[39]  L. Reder,et al.  What determines initial feeling of knowing? Familiarity with question terms, not with the answer , 1992 .

[40]  Simon Newcomb,et al.  Note on the Frequency of Use of the Different Digits in Natural Numbers , 1881 .

[41]  N. Jane Zbrodoff,et al.  Why is 9+7 harder than 2+3? Strength and interference as explanations of the problem-size effect , 1995, Memory & cognition.

[42]  John P. Moussouris Gibbs and Markov random systems with constraints , 1974 .

[43]  Geoffrey E. Hinton,et al.  Learning and relearning in Boltzmann machines , 1986 .

[44]  James L. McClelland,et al.  Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations , 1986 .

[45]  Philip J. Stroffolino,et al.  To calculate or not to calculate: A source activation confusion model of problem familiarity's role in strategy selection , 1997 .

[46]  M. Ashcraft Cognitive arithmetic: A review of data and theory , 1992, Cognition.

[47]  John R. Anderson,et al.  Error Modeling in the ACT-R Production System , 2019, Proceedings of the Sixteenth Annual Conference of the Cognitive Science Society.

[48]  C. Lebiere,et al.  An integrated theory of list memory. , 1998 .

[49]  David Haussler,et al.  Bounds on the sample complexity of Bayesian learning using information theory and the VC dimension , 1991, COLT '91.

[50]  Walter E. Schneider,et al.  Consciousness as a message-aware control mechanism to modulate cognitive processing , 1997 .

[51]  John R. Anderson,et al.  Reflections of the Environment in Memory Form of the Memory Functions , 2022 .

[52]  John R. Anderson The Adaptive Character of Thought , 1990 .

[53]  John R. Anderson,et al.  Rules of the Mind , 1993 .

[54]  L. Reder Plausibility Judgments versus Fact Retrieval: Alternative Strategies for Sentence Verification. , 1982 .

[55]  John R. Anderson,et al.  ACT-R: A higher-level account of processing capacity , 1998 .

[56]  Tony J. Simon,et al.  Computational evidence for the subitizing phenomenon as an emergent property of the human cognitive architecture , 2000, Cogn. Sci..