Synchronization of uncertain fractional-order hyper-chaotic systems via a novel adaptive interval type-2 fuzzy active sliding mode controller

In this paper, a novel adaptive interval type-2 fuzzy active sliding mode control (AIT2FASMC) approach is proposed for synchronization of fractional-order hyper-chaotic systems. The synchronization is achieved in front of uncertainties facing the fuzzy logic controller (FLC) in fractional–order hyper-chaotic systems such as uncertainties in control outputs, uncertainties in inputs to the fuzzy logic controller, and linguistic uncertainties. Two fractional-order hyper-chaotic systems can be synchronized based on Lyapunov stability theorem by using direct AIT2FASMC approach. Also, the proposed method reduces the chattering phenomena in the control signal, significantly. This novel fractional-order sliding mode controller is proposed for robust stabilization/synchronization problem of a class of fractional-order hyper-chaotic systems in the presence of external noise. Type-2 fuzzy active sliding mode control $$\left( {FASMC}\right) $$FASMC have the ability to overcome the limitations of type-1 FASMC when system is corrupted by high levels of uncertainty. Finally, the proposed approach is applied to two identical and non-identical fractional-order hyper-chaotic systems when the slave system is perturbed by external noise. Simulation results show applicability and feasibility of the proposed finite-time control strategy.

[1]  Hani Hagras,et al.  A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots , 2004, IEEE Transactions on Fuzzy Systems.

[2]  Lotfi A. Zadeh,et al.  The Concepts of a Linguistic Variable and its Application to Approximate Reasoning , 1975 .

[3]  V. Uchaikin Fractional Derivatives for Physicists and Engineers , 2013 .

[4]  Stephen P. Banks,et al.  Optimal Control of Chaos in Nonlinear Driven oscillators via Linear Time-Varying Approximations , 2008, Int. J. Bifurc. Chaos.

[5]  Fernando Reviewer-Gomide Book review: Uncertain rule-based fuzzy logic systems: Introduction and new directions , 2003 .

[6]  Intelligent Control Using Interval Type-2 Fuzzy Logic , 2007 .

[7]  Oscar Castillo,et al.  A hybrid learning algorithm for a class of interval type-2 fuzzy neural networks , 2009, Inf. Sci..

[8]  Tzuu-Hseng S. Li,et al.  Design of interval type-2 fuzzy sliding-mode controller , 2008, Inf. Sci..

[9]  José António Tenreiro Machado,et al.  What is a fractional derivative? , 2015, J. Comput. Phys..

[10]  Oscar Castillo,et al.  Interval type-2 fuzzy logic and modular neural networks for face recognition applications , 2009, Appl. Soft Comput..

[11]  Manuel A. Duarte-Mermoud,et al.  Lyapunov functions for fractional order systems , 2014, Commun. Nonlinear Sci. Numer. Simul..

[12]  M. Wagenknecht,et al.  Application of fuzzy sets of type 2 to the solution of fuzzy equation systems , 1988 .

[13]  Guanrong Chen,et al.  A note on the fractional-order Chen system , 2006 .

[14]  Jerry M. Mendel,et al.  Computing derivatives in interval type-2 fuzzy logic systems , 2004, IEEE Transactions on Fuzzy Systems.

[15]  X. Guan,et al.  Adaptive control for chaotic systems , 2004 .

[16]  Xinghuo Yu,et al.  Sliding-Mode Control With Soft Computing: A Survey , 2009, IEEE Transactions on Industrial Electronics.

[17]  I. N. Sneddon The use in mathematical physics of Erdélyi-Kober operators and of some of their generalizations , 1975 .

[18]  J. G. Ziegler,et al.  Optimum Settings for Automatic Controllers , 1942, Journal of Fluids Engineering.

[19]  B. Ross,et al.  Fractional Calculus and Its Applications , 1975 .

[20]  Fernando A. C. Gomide Book Review: "Uncertain rule-based fuzzy logic systems: introduction and new directions" by Jerry M. Mendel , 2003, Fuzzy Sets Syst..

[21]  W. Deng,et al.  Chaos synchronization of the fractional Lü system , 2005 .

[22]  S. Tong,et al.  Adaptive fuzzy approach to control unified chaotic systems , 2007 .

[23]  A. E. Matouk,et al.  Achieving synchronization between the fractional-order hyperchaotic Novel and Chen systems via a new nonlinear control technique , 2014, Appl. Math. Lett..

[24]  Jean-Jacques E. Slotine,et al.  Sliding controller design for non-linear systems , 1984 .

[25]  YangQuan Chen,et al.  Fractional-order Systems and Controls , 2010 .

[26]  Weihua Deng,et al.  Synchronization of Chaotic Fractional Chen System , 2005 .

[27]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[28]  Ivo Petras,et al.  A note on the fractional-order Chua’s system , 2008 .

[29]  Guanrong Chen,et al.  YET ANOTHER CHAOTIC ATTRACTOR , 1999 .

[30]  Luigi Fortuna,et al.  Fractional Order Systems: Modeling and Control Applications , 2010 .

[31]  T. Liao,et al.  Controlling chaos of the family of Rossler systems using sliding mode control , 2008 .

[32]  Türkay Dereli,et al.  Industrial applications of type-2 fuzzy sets and systems: A concise review , 2011, Comput. Ind..

[33]  Oscar Castillo,et al.  Systematic design of a stable type-2 fuzzy logic controller , 2008, Appl. Soft Comput..

[34]  Lotfi A. Zadeh,et al.  The concept of a linguistic variable and its application to approximate reasoning-III , 1975, Inf. Sci..

[35]  Oscar Castillo,et al.  Short Remark on Fuzzy Sets, Interval Type-2 Fuzzy Sets, General Type-2 Fuzzy Sets and Intuitionistic Fuzzy Sets , 2014, IEEE Conf. on Intelligent Systems.

[36]  Dennis S. Bernstein,et al.  Finite-Time Stability of Continuous Autonomous Systems , 2000, SIAM J. Control. Optim..

[37]  A. Luo,et al.  Fractional Dynamics and Control , 2011 .

[38]  Hadi Delavari,et al.  Synchronization of fractional-order hyper-chaotic systems based on a new adaptive sliding mode control , 2017 .

[39]  Erik Mosekilde,et al.  Synchronization of time-continuous chaotic oscillators. , 2003, Chaos.

[40]  V. Utkin Variable structure systems with sliding modes , 1977 .

[41]  Jianqiang Yi,et al.  Design of interval type-2 fuzzy logic system using sampled data and priorknowledge , 2009 .

[42]  Guanrong Chen,et al.  A Note on Hopf bifurcation in Chen's System , 2003, Int. J. Bifurc. Chaos.

[43]  Balasaheb M. Patre,et al.  Exponential function based fuzzy sliding mode control of uncertain nonlinear systems , 2014, International Journal of Dynamics and Control.

[44]  Y. ORLOV,et al.  Finite Time Stability and Robust Control Synthesis of Uncertain Switched Systems , 2004, SIAM J. Control. Optim..

[45]  Alan D. Freed,et al.  Detailed Error Analysis for a Fractional Adams Method , 2004, Numerical Algorithms.

[46]  I. Podlubny Fractional differential equations , 1998 .