One-Level Density and Non-Vanishing for Cubic L-Functions Over the Eisenstein Field

We study the one-level density for families of L-functions associated with cubic Dirichlet characters defined over the Eisenstein field. We show that the family of $L$-functions associated with the cubic residue symbols $\chi_n$ with $n$ square-free and congruent to 1 modulo 9 satisfies the Katz-Sarnak conjecture for all test functions whose Fourier transforms are supported in $(-13/11, 13/11)$, under GRH. This is the first result extending the support outside the \emph{trivial range} $(-1, 1)$ for a family of cubic L-functions. This implies that a positive density of the L-functions associated with these characters do not vanish at the central point $s=1/2$. A key ingredient in our proof is a bound on an average of generalized cubic Gauss sums at prime arguments, whose proof is based on the work of Heath-Brown and Patterson.

[1]  J. Hoffstein,et al.  Double Dirichlet series and the n-th order twists of Hecke L-series , 2003 .

[2]  C. Snyder,et al.  On the distribution of the nontrivial zeros of quadratic L-functions close to the real axis , 1999 .

[3]  Michael O. Rubinstein,et al.  Low-lying zeros of L-functions and random matrix theory , 2001 .

[4]  On the distribution of Kummer sums. , 1978 .

[5]  A. Diaconu Mean square values of Hecke L–series formed with r–th order characters , 2004 .

[6]  Patrick Meisner One Level Density for Cubic Galois Number Fields , 2017, Canadian Mathematical Bulletin.

[7]  C. David,et al.  One-level density of families of elliptic curves and the Ratios Conjecture , 2013, 1309.1027.

[8]  G. Ricotta,et al.  Statistics for low-lying zeros of symmetric power L-functions in the level aspect , 2007 .

[9]  D. R. Heath-Brown VAN DER CORPUT'S METHOD OF EXPONENTIAL SUMS (London Mathematical Society Lecture Note Series 126) , 1991 .

[10]  The average analytic rank of elliptic curves , 2003, math/0305114.

[11]  J. Ellenberg,et al.  Nonvanishing of hyperelliptic zeta functions over finite fields , 2019, Algebra & Number Theory.

[12]  Wanlin Li Vanishing of hyperelliptic L-functions at the central point , 2018, Journal of Number Theory.

[13]  S. J. Patterson,et al.  The distribution of Kummer sums at prime arguments. , 1979 .

[14]  Grigori Kolesnik,et al.  Van der Corput's method of exponential sums , 1991 .

[15]  Liangyi Zhao,et al.  One level density of low-lying zeros of families of L-functions , 2009, Compositio Mathematica.

[16]  Kerstin Vogler,et al.  Table Of Integrals Series And Products , 2016 .

[17]  H. Iwaniec,et al.  Low-lying zeros of dihedral L-functions , 2003 .

[18]  Alexandra Florea,et al.  Zeros of quadratic Dirichlet $L$-functions in the hyperelliptic ensemble , 2016, Transactions of the American Mathematical Society.

[19]  The effect of convolving families of L‐functions on the underlying group symmetries , 2006, math/0607688.

[20]  Chantal David,et al.  Nonvanishing for cubic L-functions , 2021, Forum of Mathematics, Sigma.

[21]  D. Kazhdan,et al.  Metaplectic forms , 1984 .

[22]  Peter J. Cho,et al.  Low-lying zeros of cubic Dirichlet L-functions and the Ratios conjecture , 2018, Journal of Mathematical Analysis and Applications.

[23]  S. Baier,et al.  Mean values with cubic characters , 2008, 0804.2233.

[24]  D. R. Heath-Brown The average rank of elliptic curves , 2004 .

[25]  Nicholas M. Katz,et al.  Random matrices, Frobenius eigenvalues, and monodromy , 1998 .

[26]  Z. Rudnick Traces of high powers of the Frobenius class in the hyperelliptic ensemble , 2008, 0811.3649.

[27]  A. Güloglu Low-lying zeroes of symmetric power L-functions , 2005 .

[28]  Peng Gao n -level density of the low-lying zeros of quadratic Dirichlet L -functions. , 2008, 0806.4830.

[29]  The mean values of cubic L-functions over function fields , 2019, 1901.00817.

[30]  Armand Brumer,et al.  The average rank of elliptic curves I , 1992 .

[31]  Steven J. Miller,et al.  A Symplectic Test of the L-Functions Ratios Conjecture , 2007, 0704.0927.

[32]  One-level density estimates for Dirichlet $L$-functions with extended support , 2020, 2002.11968.

[33]  W. Luo,et al.  On Hecke L-series associated with cubic characters , 2004, Compositio Mathematica.

[34]  Steven J. Miller,et al.  Introduction to: 1- and 2-Level Densities for Families of Elliptic Curves: Evidence for the Underlying Group Symmetries , 2003 .

[35]  Peter Sarnak,et al.  Low lying zeros of families of L-functions , 1999, math/9901141.

[36]  Linear statistics of low-lying zeros of L-functions , 2002, math/0208230.

[37]  Low lying zeros of L-functions with orthogonal symmetry , 2005, math/0507450.

[38]  Ezra Waxman Lower order terms for the one-level density of a symplectic family of Hecke L-functions , 2019, 1905.10362.

[39]  Steven J. Miller,et al.  The low lying zeros of a GL(4) and a GL(6) family of $L$-functions , 2006 .

[40]  Liangyi Zhao,et al.  On the low-lying zeros of Hasse-Weil L-functions for elliptic curves , 2007, 0708.2987.

[41]  P. Sarnak,et al.  Zeroes of zeta functions and symmetry , 1999 .

[42]  E. royer Petits zéros de fonctions L de formes modulaires , 2001 .

[43]  Low-lying zeros of families of elliptic curves , 2004, math/0406330.

[44]  Steven J. Miller One- and two-level densities for rational families of elliptic curves: evidence for the underlying group symmetries , 2004, Compositio Mathematica.

[45]  D. R. Heath-Brown Kummer’s conjecture for cubic Gauss sums , 2000 .