Kinetic and structural evidence of the alkenal/one reductase specificity of human ζ-crystallin

[1]  M. Picklo,et al.  Trans-4-hydroxy-2-hexenal, a product of n-3 fatty acid peroxidation: make some room HNE... , 2010, Free radical biology & medicine.

[2]  L. Papucci,et al.  ζ‐Crystallin is a bcl‐2 mRNA binding protein involved in bcl‐2 overexpression in T‐cell acute lymphocytic leukemia , 2010, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[3]  Mei Li,et al.  Crystal structures of Pseudomonas syringae pv. tomato DC3000 quinone oxidoreductase and its complex with NADPH. , 2009, Biochemical and biophysical research communications.

[4]  H. Debaix,et al.  Zeta-crystallin mediates the acid pH-induced increase of BSC1 cotransporter mRNA stability. , 2009, Kidney international.

[5]  U. Oppermann,et al.  Three-dimensional Structure and Enzymatic Function of Proapoptotic Human p53-inducible Quinone Oxidoreductase PIG3* , 2009, The Journal of Biological Chemistry.

[6]  J. Farrés,et al.  MDR quinone oxidoreductases: the human and yeast zeta-crystallins. , 2009, Chemico-biological interactions.

[7]  B. Persson,et al.  Medium- and short-chain dehydrogenase/reductase gene and protein families , 2008, Cellular and Molecular Life Sciences.

[8]  A. H. Wang,et al.  Structural basis for catalytic and inhibitory mechanisms of human prostaglandin reductase PTGR2. , 2008, Structure.

[9]  J. Hiltunen,et al.  Structural enzymological studies of 2-enoyl thioester reductase of the human mitochondrial FAS II pathway: new insights into its substrate recognition properties. , 2008, Journal of molecular biology.

[10]  In-Kwon Kim,et al.  Crystal structure of a new type of NADPH-dependent quinone oxidoreductase (QOR2) from Escherichia coli. , 2008, Journal of molecular biology.

[11]  J. Stewart,et al.  Opposite stereochemical courses for enzyme-mediated alkene reductions of an enantiomeric substrate pair. , 2008, Journal of the American Chemical Society.

[12]  T. Penning,et al.  An indomethacin analogue, N-(4-chlorobenzoyl)-melatonin, is a selective inhibitor of aldo-keto reductase 1C3 (type 2 3alpha-HSD, type 5 17beta-HSD, and prostaglandin F synthase), a potential target for the treatment of hormone dependent and hormone independent malignancies. , 2008, Biochemical pharmacology.

[13]  K. Henrick,et al.  Inference of macromolecular assemblies from crystalline state. , 2007, Journal of molecular biology.

[14]  G. FitzGerald,et al.  Identification of a Novel Prostaglandin Reductase Reveals the Involvement of Prostaglandin E2 Catabolism in Regulation of Peroxisome Proliferator-activated Receptor γ Activation* , 2007, Journal of Biological Chemistry.

[15]  J. Farrés,et al.  Human and yeast ζ-crystallins bind AU-rich elements in RNA , 2007, Cellular and Molecular Life Sciences.

[16]  D. Bedgar,et al.  Mechanistic and Structural Studies of Apoform, Binary, and Ternary Complexes of the Arabidopsis Alkenal Double Bond Reductase At5g16970* , 2006, Journal of Biological Chemistry.

[17]  P. Rangarajan,et al.  Isolation of a single-stranded DNA-binding protein from the methylotrophic yeast, Pichia pastoris and its identification as zeta crystallin , 2006, Nucleic acids research.

[18]  Jie Liang,et al.  CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues , 2006, Nucleic Acids Res..

[19]  L. Shimon,et al.  Structure of alcohol dehydrogenase from Entamoeba histolytica. , 2006, Acta crystallographica. Section D, Biological crystallography.

[20]  Donna M. Peehl,et al.  Aldo-keto reductase (AKR) 1C3: Role in prostate disease and the development of specific inhibitors , 2006, Molecular and Cellular Endocrinology.

[21]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[22]  F. Frolow,et al.  The ternary complex of Pseudomonas aeruginosa alcohol dehydrogenase with NADH and ethylene glycol , 2004, Protein science : a publication of the Protein Society.

[23]  T. Kensler,et al.  The Catalytic and Kinetic Mechanisms of NADPH-dependent Alkenal/one Oxidoreductase* , 2004, Journal of Biological Chemistry.

[24]  Tetsuya Hori,et al.  Structural Basis of Leukotriene B4 12-Hydroxydehydrogenase/15-Oxo-prostaglandin 13-Reductase Catalytic Mechanism and a Possible Src Homology 3 Domain Binding Loop* , 2004, Journal of Biological Chemistry.

[25]  Paul D Adams,et al.  X-ray crystallographic and kinetic studies of human sorbitol dehydrogenase. , 2003, Structure.

[26]  J. P. Pardo,et al.  Diversity, taxonomy and evolution of medium-chain dehydrogenase/reductase superfamily. , 2003, European journal of biochemistry.

[27]  N. Curthoys,et al.  pH-responsive stabilization of glutamate dehydrogenase mRNA in LLC-PK1-F+ cells. , 2003, American journal of physiology. Renal physiology.

[28]  Y. Kakuta,et al.  Crystal Structures of the Quinone Oxidoreductase from Thermus thermophilus HB8 and Its Complex with NADPH: Implication for NADPH and Substrate Recognition , 2003, Journal of bacteriology.

[29]  A. Kastaniotis,et al.  Structure-function analysis of enoyl thioester reductase involved in mitochondrial maintenance. , 2003, Journal of molecular biology.

[30]  T. Ohta,et al.  Oxidative-stress-inducible qorA encodes an NADPH-dependent quinone oxidoreductase catalysing a one-electron reduction in Staphylococcus aureus. , 2003, Microbiology.

[31]  D. Inzé,et al.  The NADPH:quinone oxidoreductase P1-ζ-crystallin in Arabidopsis catalyzes the α,β-hydrogenation of 2-alkenals: detoxication of the lipid peroxide-derived reactive aldehydes , 2002 .

[32]  B. Persson,et al.  Medium‐chain dehydrogenases/reductases (MDR) , 2002 .

[33]  M. Kwak,et al.  Antioxidative Function and Substrate Specificity of NAD(P)H- dependent Alkenal/one Oxidoreductase , 2001, The Journal of Biological Chemistry.

[34]  Y. Yokota,et al.  Taxon-specific ζ-Crystallin in Japanese Tree Frog (Hyla japonica) Lens* , 2001, The Journal of Biological Chemistry.

[35]  N. Curthoys,et al.  Identification of ζ-Crystallin/NADPH:Quinone Reductase as a Renal Glutaminase mRNA pH Response Element-binding Protein* , 2001, The Journal of Biological Chemistry.

[36]  T. Penning,et al.  Retention of NADPH-linked quinone reductase activity in an aldo-keto reductase following mutation of the catalytic tyrosine. , 1998, Biochemistry.

[37]  H. Kuo,et al.  BINDING PROPERTIES OF BOVINE OCULAR LENS ZETA‐CRYSTALLIN TO RIGHT‐HANDED B‐DNA, LEFT‐HANDED Z‐DNA, AND SINGLE‐STRANDED DNA , 1998, Cell biology international.

[38]  A. Alhomida,et al.  Purification and Characterization ofζ-Crystallin from the Camel Lens , 1995 .

[39]  D. Ollis,et al.  Crystal structure of Escherichia coli QOR quinone oxidoreductase complexed with NADPH. , 1995, Journal of molecular biology.

[40]  E. Cadenas,et al.  One- and two-electron reduction of 2-methyl-1,4-naphthoquinone bioreductive alkylating agents: kinetic studies, free-radical production, thiol oxidation and DNA-strand-break formation. , 1994, The Biochemical journal.

[41]  B. Persson,et al.  ζ‐Crystallin versus other members of the alcohol dehydrogenase super‐family Variability as a functional characteristic , 1993, FEBS letters.

[42]  A. Y. Lu,et al.  Identification of a glycine-rich sequence as an NAD(P)H-binding site and tyrosine 128 as a dicumarol-binding site in rat liver NAD(P)H:quinone oxidoreductase by site-directed mutagenesis. , 1992, The Journal of biological chemistry.

[43]  I. Rodriguez,et al.  A guinea-pig hereditary cataract contains a splice-site deletion in a crystallin gene. , 1992, Biochimica et biophysica acta.

[44]  J. Zigler,et al.  Identification and characterization of the enzymatic activity of zeta-crystallin from guinea pig lens. A novel NADPH:quinone oxidoreductase. , 1992, The Journal of biological chemistry.

[45]  D. Garland,et al.  zeta-Crystallin is a major protein in the lens of Camelus dromedarius. , 1991, Archives of biochemistry and biophysics.

[46]  H. Hayashi,et al.  Purification and characterization of rho-crystallin from Japanese common bullfrog lens. , 1990, The Journal of biological chemistry.

[47]  R. Armstrong,et al.  Polycyclic aromatic hydrocarbon quinones and glutathione thioethers as substrates and inhibitors of the human placental NADP-linked 15-hydroxyprostaglandin dehydrogenase. , 1987, The Journal of biological chemistry.

[48]  J. Zigler,et al.  Zeta-crystallin, a novel lens protein from the guinea pig. , 1987, Current eye research.

[49]  Á. Catala Lipid peroxidation of membrane phospholipids generates hydroxy-alkenals and oxidized phospholipids active in physiological and/or pathological conditions. , 2009, Chemistry and physics of lipids.

[50]  J. Farrés,et al.  Human and yeast zeta-crystallins bind AU-rich elements in RNA. , 2007, Cellular and molecular life sciences : CMLS.

[51]  B. McConkey,et al.  The performance of current methods in ligand-protein docking , 2002 .

[52]  D. Inzé,et al.  The NADPH:quinone oxidoreductase P1-zeta-crystallin in Arabidopsis catalyzes the alpha,beta-hydrogenation of 2-alkenals: detoxication of the lipid peroxide-derived reactive aldehydes. , 2002, Plant & cell physiology.

[53]  B. Persson,et al.  Medium-chain dehydrogenases/reductases (MDR). Family characterizations including genome comparisons and active site modeling. , 2002, European journal of biochemistry.

[54]  N. Curthoys,et al.  Identification of zeta-crystallin/NADPH:quinone reductase as a renal glutaminase mRNA pH response element-binding protein. , 2001, The Journal of biological chemistry.

[55]  D S Goodsell,et al.  Automated docking of flexible ligands: Applications of autodock , 1996, Journal of molecular recognition : JMR.

[56]  A. Alhomida,et al.  Purification and characterization of zeta-crystallin from the camel lens. , 1995, Biochemical and biophysical research communications.