Convergence of Numerical Time-Averaging and Stationary Measures via Poisson Equations

Numerical approximation of the long time behavior of a stochastic differential equation (SDE) is considered. Error estimates for time-averaging estimators are obtained and then used to show that the stationary behavior of the numerical method converges to that of the SDE. The error analysis is based on using an associated Poisson equation for the underlying SDE. The main advantages of this approach are its simplicity and universality. It works equally well for a range of explicit and implicit schemes, including those with simple simulation of random variables, and for hypoelliptic SDEs. To simplify the exposition, we consider only the case where the state space of the SDE is a torus, and we study only smooth test functions. However, we anticipate that the approach can be applied more widely. An analogy between our approach and Stein's method is indicated. Some practical implications of the results are discussed.

[1]  Sourav Chatterjee,et al.  A new approach to strong embeddings , 2007, 0711.0501.

[2]  Grigorios A. Pavliotis,et al.  Multiscale Methods: Averaging and Homogenization , 2008 .

[3]  Rabi Bhattacharya,et al.  A Central Limit Theorem for Diffusions with Periodic Coefficients , 1985 .

[4]  Robert J. Elliott,et al.  A CONTINUOUS TIME KRONECKER'S LEMMA AND MARTINGALE CONVERGENCE , 2001 .

[5]  G. Pagès,et al.  Sur quelques algorithmes rcursifs pour les probabilits numriques , 2001 .

[6]  A. Barbour Stein's method for diffusion approximations , 1990 .

[7]  Vincent Lemaire,et al.  Estimation récursive de la mesure invariante d'un processus de diffusion. , 2005 .

[8]  P. Donnelly MARKOV PROCESSES Characterization and Convergence (Wiley Series in Probability and Mathematical Statistics) , 1987 .

[9]  Jonathan C. Mattingly,et al.  Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise , 2002 .

[10]  S. Ethier,et al.  Markov Processes: Characterization and Convergence , 2005 .

[11]  Jonathan C. Mattingly,et al.  A weak trapezoidal method for a class of stochastic differential equations , 2009, 0906.3475.

[12]  D. Talay Stochastic Hamiltonian Systems : Exponential Convergence to the Invariant Measure , and Discretization by the Implicit Euler Scheme , 2002 .

[13]  A. Veretennikov,et al.  On the poisson equation and diffusion approximation 3 , 2001, math/0506596.

[14]  R. Tweedie,et al.  Geometric convergence and central limit theorems for multidimensional Hastings and Metropolis algorithms , 1996 .

[15]  R. Khasminskii Stochastic Stability of Differential Equations , 1980 .

[16]  D. Talay,et al.  Expansion of the global error for numerical schemes solving stochastic differential equations , 1990 .

[17]  E. Saar Multiscale Methods , 2006, astro-ph/0612370.

[18]  D. Talay,et al.  The law of the Euler scheme for stochastic differential equations , 1996 .

[19]  Lars Hr̲mander,et al.  The Analysis of Linear Partial Differential Operators III: Pseudo-Differential Operators , 1985 .

[20]  Mark Freidlin,et al.  Averaging principle for a class of stochastic reaction–diffusion equations , 2008, 0805.0297.

[21]  Fabien Panloup,et al.  Computation of the invariant measure for a Lévy driven SDE: Rate of convergence , 2006, math/0611072.

[22]  Jonathan C. Mattingly,et al.  Spectral gaps in Wasserstein distances and the 2D stochastic Navier–Stokes equations , 2006, math/0602479.

[23]  M. Manhart,et al.  Markov Processes , 2018, Introduction to Stochastic Processes and Simulation.

[24]  S. A. Klokov,et al.  On mixing and convergence rates for a family of Markov processes approximating SDEs , 2006 .

[25]  V. Lemaire An adaptive scheme for the approximation of dissipative systems , 2005, math/0502317.

[26]  R. Tweedie,et al.  Exponential convergence of Langevin distributions and their discrete approximations , 1996 .

[27]  D. Talay Second-order discretization schemes of stochastic differential systems for the computation of the invariant law , 1990 .

[28]  G. Pagès,et al.  RECURSIVE COMPUTATION OF THE INVARIANT DISTRIBUTION OF A DIFFUSION: THE CASE OF A WEAKLY MEAN REVERTING DRIFT , 2003 .

[29]  Jonathan C. Mattingly,et al.  Asymptotic coupling and a general form of Harris’ theorem with applications to stochastic delay equations , 2009, 0902.4495.

[30]  M. V. Tretyakov,et al.  Computing ergodic limits for Langevin equations , 2007 .

[31]  D. Talay Numerical solution of stochastic differential equations , 1994 .

[32]  Rune B. Lyngsø,et al.  Lecture Notes I , 2008 .

[33]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[34]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[35]  S. Meyn,et al.  Exponential and Uniform Ergodicity of Markov Processes , 1995 .

[36]  Jonathan C. Mattingly,et al.  An adaptive Euler–Maruyama scheme for SDEs: convergence and stability , 2006, math/0601029.

[37]  E. Vanden-Eijnden,et al.  Pathwise accuracy and ergodicity of metropolized integrators for SDEs , 2009, 0905.4218.

[38]  Denis Talay,et al.  The law of the Euler scheme for stochastic differential equations , 1996, Monte Carlo Methods Appl..

[39]  Tony Shardlow,et al.  A Perturbation Theory for Ergodic Markov Chains and Application to Numerical Approximations , 2000, SIAM J. Numer. Anal..

[40]  Denis Talay,et al.  Approximation of Lyapunov Exponents of Nonlinear Stochastic Differential Equations , 1996, SIAM J. Appl. Math..

[41]  Giuseppe Da Prato,et al.  Second Order Partial Differential Equations in Hilbert Spaces: Bibliography , 2002 .

[42]  Fabien Panloup Recursive computation of the invariant measure of a stochastic differential equation driven by a Lévy process , 2005, math/0509712.

[43]  N. Krylov,et al.  Lectures on Elliptic and Parabolic Equations in Holder Spaces , 1996 .

[44]  M. V. Tretyakov,et al.  Stochastic Numerics for Mathematical Physics , 2004, Scientific Computation.