Thin-Layer Spectroelectrochemistry on an Aqueous Microdrop

In this paper, we report a technique for conducting spectroelectrochemistry on an aqueous micro-drop containing an analyte in a bulk electrolysis system, as an easy, rapid and economic way of investigating spectroelectrochemical behavior and correlating spectroscopic properties with thermodynamic potentials on a small scale. The chemical systems used to demonstrate the aqueous micro-drop technique are an absorbance based molecular probe [Fe(CN)6]3-/4- and an emission based molecular probe [Re(dmpe)3]2+/+ . These chemical systems in a micro-drop are evaluated using cyclic voltammetry, UV-visable absorbance spectroscopy, and fluorescence spectrometry.

[1]  Theodore Kuwana,et al.  Electrochemical Studies Using Conducting Glass Indicator Electrodes. , 1964 .

[2]  W. Heineman,et al.  An optically transparent thin layer electrochemical cell , 1967 .

[3]  C. N. Reilley,et al.  Evaluation of an improved thin-layer electrode , 1968 .

[4]  G. Hitchings,et al.  A comparison of the specificities of xanthine oxidase and aldehyde oxidase. , 1972, Archives of biochemistry and biophysics.

[5]  H. Siegenthaler,et al.  Synthesis and spectroelectrochemical properties of pentaammineruthenium(II) complexes of quinone diimines , 1975 .

[6]  W. Heineman,et al.  Measurement of enzyme E'values by optically transparent thin layer electrochemical cells. , 1975, Analytical chemistry.

[7]  G. Mamantov,et al.  Optically transparent vitreous carbon electrode , 1977 .

[8]  G. Dryhurst,et al.  Electrochemical oxidation of uric acid and xanthine: An investigation by cyclic voltammetry, double potential step chronoamperometry and thin-layer spectroelectrochemistry , 1978 .

[9]  H. Gray,et al.  Studies of the thermodynamics of electron transfer reactions of blue copper proteins , 1979 .

[10]  W. Heineman,et al.  Thin-layer spectroelectrochemical studies of cobalt and copper Schiff base complexes , 1979 .

[11]  G. Mamantov,et al.  Spectroelectrochemistry in Melts: Applications to Molten Chloroaluminates , 1980 .

[12]  W. Heineman,et al.  Optically transparent thin-layer electrochemical flow cell for liquid chromatography , 1980 .

[13]  R. Wightman,et al.  Spectroelectrochemistry of N‐Retinylidene‐n‐butylamine , 1981 .

[14]  L. M. Doane,et al.  Optically transparent thin-layer electrode for organic solvents , 1982 .

[15]  D. J. Cohen,et al.  Anaerobic thin-layer electrochemical cell for planar optically transparent electrodes , 1982 .

[16]  H. Finklea,et al.  Thin-layer spectroelectrochemistry cell with demountable gold or mercury-gold minigrid electrodes , 1983 .

[17]  J. Zak,et al.  Thin-layer electrochemical cell for long optical path length observation of solution species , 1983 .

[18]  H. Dürr,et al.  Zum Mechanismus der Photoreduktion von Wasser mit Ruthenium‐trisbipyrazil als Sensibilisator , 1983 .

[19]  Vincenzo Balzani,et al.  Ru(II) polypyridine complexes: photophysics, photochemistry, eletrochemistry, and chemiluminescence , 1988 .

[20]  M. Hill,et al.  Oligothiophene Cation Radicals. π-Dimers as Alternatives to Bipolarons in Oxidized Polythiophenes , 1992 .

[21]  J. R. Kirchhoff,et al.  Design and characterization of a spectroelectrochemistry cell for absorption and luminescence measurements , 1993 .

[22]  Guo Tiande,et al.  Long optical path, single potential step chronoabsorptometric determination of heterogeneous electron-transfer kinetic parameters of quasi-reversible processes , 1994 .

[23]  M. Comtat,et al.  Some examples of the use of thin layer spectroelectrochemistry in the study of electron transfer between metals and enzymes , 1994 .

[24]  M. Porter,et al.  Long optical path length cell for thin-layer spectroelectrochemistry , 1997 .

[25]  W. Heineman,et al.  Spectroelectrochemical sensing based on multimode selectivity simultaneously achievable in a single device. 2. Demonstration of selectivity in the presence of direct interferences. , 1997, Analytical chemistry.

[26]  W. Kaim,et al.  Reactions of New Organoplatinum(II) and -(IV) Complexes of 1,4-Diaza-1,3-butadienes with Light and Electrons. Emission vs Photochemistry and the Electronic Structures of Ground, Reduced, Oxidized, and Low-Lying Charge-Transfer Excited States† , 1998 .

[27]  A. F. Silva,et al.  Electro-assisted solvent extraction of Cu2+, Ni2+ and Cd2+ , 1998 .

[28]  A. Lindgren,et al.  Spectroelectrochemical study of cellobiose dehydrogenase and diaphorase in a thiol-modified gold capillary in the absence of mediators. , 2001, Bioelectrochemistry.

[29]  Ivano G. R. Gutz,et al.  Long-Optical-Path Thin-Layer Spectroelectrochemical Flow Cell with Inexpensive Gold Electrodes , 2001 .

[30]  M. Itagaki,et al.  Studies on Electrochemical Solvent Extraction of Metal Ions at Water/1,2-dichloroethane Interface , 2001 .

[31]  H. Toma,et al.  Spectroelectrochemical characterization of organic and metal-organic compounds , 2002 .

[32]  A. Uehara,et al.  A new electrochemical method to study the distribution of weak acids at the aqueous|organic solution interface , 2004 .

[33]  Z. Yoshida,et al.  Development of high performance electrochemical solvent extraction method , 2009 .

[34]  W. Kaim,et al.  Electronic structure alternatives in nitrosylruthenium complexes. , 2010, Dalton transactions.

[35]  W. Heineman,et al.  Rapid Prototyped Optically Transparent Thin‐Layer Electrode Holder for Spectroelectrochemistry in Bench‐Top Spectrophotometers , 2010 .

[36]  W. Heineman,et al.  Semi-infinite linear diffusion spectroelectrochemistry on an aqueous micro-drop. , 2011, Analytical chemistry.