Kinetic and thermodynamic aspects in the microwave-assisted synthesis of ZnO nanoparticles in benzyl alcohol.

A detailed study of kinetic and thermodynamic aspects in the microwave-assisted synthesis of ZnO nanoparticles from zinc acetate and benzyl alcohol is presented. The use of a nonaqueous sol-gel approach provides the unique opportunity to investigate simultaneously the organic reaction, that is, the esterification between acetate and benzyl alcohol, and the inorganic process, represented by the growth of the ZnO nanoparticles. Monitoring both the formation of the organic species as well as ZnO crystal size with time makes it possible to directly correlate the kinetics of the organic side reaction with the growth kinetics of the ZnO nanoparticles. The esterification reaction, which is the chemical basis for producing the monomers for ZnO formation, was found to be first order. The growth of the ZnO nanoparticles followed the Lifshitz-Slyozov-Wagner model for coarsening, pointing to a diffusion-limited process. Comparison of the microwave-mediated route with conventional heating showed that microwave irradiation greatly accelerates nanoparticle formation by (a) facilitating the dissolution of the precursor in the solvent, (b) increasing the rate constants for the esterification reaction by 1 order of magnitude, resulting in faster production of monomer and consequently in an earlier nucleation event, and (c) increasing the rate constants k(growth) for the crystal growth from 3.9 nm(3)/min (conventional heating) to 15.4 nm(3)/min (microwave heating).

[1]  R. Piticescu,et al.  Solvothermal Synthesis of Co-doped ZnO Nanopowders , 2008 .

[2]  R. Varma,et al.  Microwave-Assisted Shape-Controlled Bulk Synthesis of Ag and Fe Nanorods in Poly(ethylene glycol) Solutions , 2008 .

[3]  Taeghwan Hyeon,et al.  Synthesis of monodisperse spherical nanocrystals. , 2007, Angewandte Chemie.

[4]  T. Sugimoto Preparation of monodispersed colloidal particles , 1987 .

[5]  P. Searson,et al.  Influence of solvent on the growth of ZnO nanoparticles. , 2003, Journal of colloid and interface science.

[6]  Jin-Sil Choi,et al.  Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes. , 2006, Angewandte Chemie.

[7]  Huifeng Qian,et al.  Rapid synthesis of highly luminescent CdTe nanocrystals in the aqueous phase by microwave irradiation with controllable temperature. , 2005, Chemical communications.

[8]  E. Longo,et al.  Influence of Microwave Heating on the Growth of Gadolinium-Doped Cerium Oxide Nanorods , 2008 .

[9]  C. Kappe,et al.  Controlled microwave heating in modern organic synthesis. , 2004, Angewandte Chemie.

[10]  S. Komarneni,et al.  Microwave-hydrothermal process for the synthesis of rutile , 2005 .

[11]  A. Manthiram,et al.  Comparison of Microwave Assisted Solvothermal and Hydrothermal Syntheses of LiFePO4/C Nanocomposite Cathodes for Lithium Ion Batteries , 2008 .

[12]  I. R. Abothu,et al.  Barium titanate ceramics prepared from conventional and microwave hydrothermal powders , 1999 .

[13]  S. Hayakawa,et al.  FT-IR Study of Ester Solubilization into a Micelle Solution , 1987 .

[14]  L. Curtiss,et al.  Prediction of TiO2 nanoparticle phase and shape transitions controlled by surface chemistry. , 2005, Nano letters.

[15]  V. Lamer,et al.  Theory, Production and Mechanism of Formation of Monodispersed Hydrosols , 1950 .

[16]  W. Conner,et al.  Microwaves and sorption on oxides: a surface temperature investigation. , 2006, The journal of physical chemistry. B.

[17]  T. Nann,et al.  High-quality ZnS shells for CdSe nanoparticles: rapid microwave synthesis. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[18]  N. Pesika,et al.  Coarsening of metal oxide nanoparticles. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  C. Feldmann,et al.  Microwave-assisted synthesis of indium tin oxide nanocrystals in polyol media and transparent, conductive layers thereof , 2008 .

[20]  S. Komarneni Nanophase materials by hydrothermal, microwave- hydrothermal and microwave-solvothermal methods , 2003 .

[21]  J. Rossignol,et al.  Rapid synthesis of tin (IV) oxide nanoparticles by microwave induced thermohydrolysis , 2008 .

[22]  Markus Niederberger,et al.  Nonaqueous sol-gel routes to metal oxide nanoparticles. , 2007, Accounts of chemical research.

[23]  P. Dutta,et al.  Effect of Microwave Frequency on Hydrothermal Synthesis of Nanocrystalline Tetragonal Barium Titanate , 2008 .

[24]  A. Taubert,et al.  Kinetics and particle formation mechanism of zinc oxide particles in polymer-controlled precipitation from aqueous solution , 2002 .

[25]  Wenyong Lai,et al.  Microwave-Assisted Synthesis of Water-Dispersed CdTe Nanocrystals with High Luminescent Efficiency and Narrow Size Distribution , 2007 .

[26]  Reinhard Nesper,et al.  Oxidic nanotubes and nanorods--anisotropic modules for a future nanotechnology. , 2002, Angewandte Chemie.

[27]  Zhenjiang Miao,et al.  Facile synthesis of high quality TiO2 nanocrystals in ionic liquid via a microwave-assisted process. , 2007, Journal of the American Chemical Society.

[28]  J. Grunwaldt,et al.  Studying the solvothermal formation of MoO3 fibers by complementary in situ EXAFS/EDXRD techniques. , 2005, Angewandte Chemie.

[29]  Y. Hwang,et al.  Microwave effect in the fast synthesis of microporous materials: which stage between nucleation and crystal growth is accelerated by microwave irradiation? , 2007, Chemistry.

[30]  M. Niederberger,et al.  Organic reaction pathways in the nonaqueous synthesis of metal oxide nanoparticles. , 2006, Chemistry.

[31]  Ying-Jie Zhu,et al.  Shape-controlled synthesis of zinc oxide by microwave heating using an imidazolium salt , 2004 .

[32]  I. Lifshitz,et al.  The kinetics of precipitation from supersaturated solid solutions , 1961 .

[33]  P. Searson,et al.  Influence of organic capping ligands on the growth kinetics of ZnO nanoparticles , 2001 .

[34]  S. Narayanan,et al.  A comparative esterification of benzyl alcohol with acetic acid over zeolites Hβ, HY and HZSM5 , 2004 .

[35]  P. Searson,et al.  The Growth Kinetics of TiO2 Nanoparticles from Titanium(IV) Alkoxide at High Water/Titanium Ratio , 2003 .

[36]  A. Murugan,et al.  Synthesis of nanocrystalline anatase TiO2 by microwave hydrothermal method , 2006 .

[37]  M. Niederberger,et al.  Organic chemistry in inorganic nanomaterials synthesis , 2008 .

[38]  E. W. Robb,et al.  Microwave-induced organic reaction enhancement (more) chemistry: Techniques for rapid, safe and inexpensive synthesis , 1994 .

[39]  Microwave synthesis of highly aligned ultra narrow semiconductor rods and wires. , 2006 .

[40]  José F. Herrera Santos,et al.  Influence of the reactant concentrations on the synthesis of ZnO nanoparticles. , 2005, Journal of colloid and interface science.

[41]  A. Baldan,et al.  Review Progress in Ostwald ripening theories and their applications to nickel-base superalloys Part I: Ostwald ripening theories , 2002 .

[42]  A. Rogach,et al.  Evolution of an Ensemble of Nanoparticles in a Colloidal Solution: Theoretical Study , 2001 .

[43]  Masayuki Hashimoto,et al.  Microwave‐Assisted Synthesis of Metallic Nanostructures in Solution , 2006 .

[44]  S. Apte,et al.  Microwave–solvothermal synthesis of nanocrystalline cadmium sulfide , 2001 .

[45]  Yau-Chen Jiang,et al.  Microwave-assisted synthesis of sulfide M2S3 (m = Bi, Sb) nanorods using an ionic liquid. , 2005, The journal of physical chemistry. B.

[46]  D. Awschalom,et al.  Kinetic-Dependent Crystal Growth of Size-Tunable CdS Nanoparticles , 2001 .

[47]  S. Kelly,et al.  Growth dynamics of CdTe nanoparticles in liquid and crystalline phases. , 2007, Journal of the American Chemical Society.

[48]  Jiann-Yang Hwang,et al.  Microwave-assisted wet chemical synthesis: advantages, significance, and steps to industrialization , 2003 .

[49]  A. E. Nielsen,et al.  Nucleation and Growth of Crystals at High Supersaturation , 1969 .

[50]  T. Hyeon,et al.  Kinetics of monodisperse iron oxide nanocrystal formation by "heating-up" process. , 2007, Journal of the American Chemical Society.

[51]  Howard Reiss,et al.  The Growth of Uniform Colloidal Dispersions , 1951 .

[52]  Huifeng Qian,et al.  Microwave-assisted aqueous synthesis: a rapid approach to prepare highly luminescent ZnSe(S) alloyed quantum dots. , 2006, The journal of physical chemistry. B.

[53]  E. Longo,et al.  Growth kinetics of tin oxide nanocrystals in colloidal suspensions under hydrothermal conditions , 2006 .

[54]  Xianluo Hu,et al.  Continuous Size Tuning of Monodisperse ZnO Colloidal Nanocrystal Clusters by a Microwave‐Polyol Process and Their Application for Humidity Sensing , 2008 .

[55]  Jingwei Zhang,et al.  Microwave-Assisted Synthesis of Various ZnO Hierarchical Nanostructures: Effects of Heating Parameters of Microwave Oven , 2008 .

[56]  C. Leonelli,et al.  Main development directions in the application of microwave irradiation to the synthesis of nanopowders , 2007 .

[57]  Xianluo Hu,et al.  α‐Fe2O3 Nanorings Prepared by a Microwave‐Assisted Hydrothermal Process and Their Sensing Properties , 2007 .

[58]  A. Ardell,et al.  The effect of volume fraction on particle coarsening: theoretical considerations , 1972 .

[59]  M. Antonietti,et al.  Crystallization of indium tin oxide nanoparticles: from cooperative behavior to individuality. , 2007, Small.

[60]  G. Tompsett,et al.  How could and do microwaves influence chemistry at interfaces? , 2008, The journal of physical chemistry. B.

[61]  N. Pinna,et al.  Surfactant‐Free Nonaqueous Synthesis of Metal Oxide Nanostructures , 2008 .

[62]  A. Gedanken,et al.  Sonochemical and Microwave-Assisted Preparations of PbTe and PbSe. A Comparative Study. , 2001 .

[63]  D. Mingos Microwave syntheses of inorganic materials , 1993 .

[64]  Carl Wagner,et al.  Theorie der Alterung von Niederschlägen durch Umlösen (Ostwald‐Reifung) , 1961, Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie.

[65]  Xiaogang Peng,et al.  Kinetics of II-VI and III-V Colloidal Semiconductor Nanocrystal Growth: “Focusing” of Size Distributions , 1998 .

[66]  J. Gerbec,et al.  Microwave-enhanced reaction rates for nanoparticle synthesis. , 2005, Journal of the American Chemical Society.

[67]  Victor K. La Mer,et al.  Nucleation in Phase Transitions. , 1952 .

[68]  B. Vaidhyanathan,et al.  Synthesis of inorganic solids using microwaves , 1999 .

[69]  N. Pinna,et al.  Solvent Dependent Shape and Magnetic Properties of Doped ZnO Nanostructures , 2007 .

[70]  C. Feldmann,et al.  Microwave-assisted synthesis of luminescent LaPO4:Ce,Tb nanocrystals in ionic liquids. , 2006, Angewandte Chemie.

[71]  Markus Niederberger,et al.  One-minute synthesis of crystalline binary and ternary metal oxide nanoparticles. , 2008, Chemical communications.

[72]  Weizhuo Zhong,et al.  Growth mechanism and growth habit of oxide crystals , 1999 .

[73]  M. El-Sayed,et al.  Chemistry and properties of nanocrystals of different shapes. , 2005, Chemical reviews.