Stationary distribution of stochastic SIRS epidemic model with standard incidence

We study stochastic versions of a deterministic SIRS(Susceptible, Infective, Recovered, Susceptible) epidemic model with standard incidence. We study the existence of a stationary distribution of stochastic system by the theory of integral Markov semigroup. We prove the distribution densities of the solutions can converge to an invariant density in $L^1$. This shows the system is ergodic. The presented results are demonstrated by numerical simulations.

[1]  Yanan Zhao,et al.  The threshold of a stochastic SIRS epidemic model with saturated incidence , 2014, Appl. Math. Lett..

[2]  Donal O'Regan,et al.  The extinction and persistence of the stochastic SIS epidemic model with vaccination , 2013 .

[3]  Daqing Jiang,et al.  The ergodicity and extinction of stochastically perturbed SIR and SEIR epidemic models with saturated incidence , 2012 .

[4]  Desmond J. Higham,et al.  An Algorithmic Introduction to Numerical Simulation of Stochastic Differential Equations , 2001, SIAM Rev..

[5]  Herbert W. Hethcote,et al.  The Mathematics of Infectious Diseases , 2000, SIAM Rev..

[6]  R. Léandre,et al.  Décroissance exponentielle du noyau de la chaleur sur la diagonale (II) , 1991 .

[7]  M. Li,et al.  Global dynamics of a SEIR model with varying total population size. , 1999, Mathematical Biosciences.

[8]  X. Mao,et al.  A stochastic model of AIDS and condom use , 2007 .

[9]  A. Lahrouz,et al.  Global analysis of a deterministic and stochastic nonlinear SIRS epidemic model , 2011 .

[10]  M. N’zi,et al.  Global analysis of a deterministic and stochastic nonlinear SIRS epidemic model with saturated incidence rate , 2016 .

[11]  Aadil Lahrouz,et al.  Extinction and stationary distribution of a stochastic SIRS epidemic model with non-linear incidence , 2013 .

[12]  R. May,et al.  Population biology of infectious diseases: Part II , 1979, Nature.

[13]  Xuerong Mao,et al.  THE THRESHOLD OF A STOCHASTIC SIRS EPIDEMIC MODEL IN A POPULATION WITH VARYING SIZE , 2015 .

[14]  R. Rudnicki,et al.  Stability of Markov Semigroups and Applications to Parabolic Systems , 1997 .

[15]  Qingshan Yang,et al.  Dynamics of a multigroup SIR epidemic model with stochastic perturbation , 2012, Autom..

[16]  Daqing Jiang,et al.  Long-time behaviour of a perturbed SIR model by white noise , 2013 .

[17]  S. Varadhan,et al.  On the Support of Diffusion Processes with Applications to the Strong Maximum Principle , 1972 .

[18]  Ryszard Rudnicki,et al.  Influence of stochastic perturbation on prey-predator systems. , 2007, Mathematical biosciences.

[19]  Robert M. May,et al.  Stability and Complexity in Model Ecosystems , 2019, IEEE Transactions on Systems, Man, and Cybernetics.

[20]  Zhenjie Liu,et al.  Dynamics of positive solutions to SIR and SEIR epidemic models with saturated incidence rates , 2013 .

[21]  R. Léandre,et al.  Decroissance exponentielle du noyau de la chaleur sur la diagonale (I) , 1991 .

[22]  Ryszard Rudnicki,et al.  Long-time behaviour of a stochastic prey–predator model , 2003 .

[23]  Denis R. Bell The Malliavin Calculus , 1987 .

[24]  R. Khasminskii Stochastic Stability of Differential Equations , 1980 .

[25]  Liangjian Hu,et al.  A Stochastic Differential Equation SIS Epidemic Model , 2011, SIAM J. Appl. Math..

[26]  Hong Liu,et al.  The asymptotic behavior of stochastically perturbed DI SIR epidemic models with saturated incidences , 2012, Autom..

[27]  R. May,et al.  Population Biology of Infectious Diseases , 1982, Dahlem Workshop Reports.

[28]  R. May,et al.  Infectious Diseases of Humans: Dynamics and Control , 1991, Annals of Internal Medicine.

[29]  S. Busenberg,et al.  Analysis of a disease transmission model in a population with varying size , 1990, Journal of mathematical biology.

[30]  W. O. Kermack,et al.  A contribution to the mathematical theory of epidemics , 1927 .