DISCOVERY OF AN UNUSUAL OPTICAL TRANSIENT WITH THE HUBBLE SPACE TELESCOPE

We present observations of SCP 06F6, an unusual optical transient discovered during the Hubble Space Telescope Cluster Supernova Survey. The transient brightened over a period of ∼100 days, reached a peak magnitude of ∼ 21.0 in both i775 and z850, and then declined over a similar timescale. There is no host galaxy or progenitor star detected at the location of the transient to a 3σ upper limit of i775 ⩾ 26.4 and z850 ⩾ 26.1, giving a corresponding lower limit on the flux increase of a factor of ∼ 120. Multiple spectra show five broad absorption bands between 4100 Å and 6500 Å, and a mostly featureless continuum longward of 6500 Å. The shape of the light curve is inconsistent with microlensing. The transient's spectrum, in addition to being inconsistent with all known supernova types, does not match any spectrum in the Sloan Digital Sky Survey database. We suggest that the transient may be one of a new class.

[1]  Patrick B. Hall,et al.  C2 in Peculiar DQ White Dwarfs , 2008, 0801.4586.

[2]  Mamoru Doi,et al.  The Subaru/XMM-Newton Deep Survey (SXDS). V. Optically Faint Variable Object Survey , 2007, 0712.3108.

[3]  E. Ofek,et al.  The Environment of M85 Optical Transient 2006-1: Constraints on the Progenitor Age and Mass , 2007, 0710.3192.

[4]  Robert M. Quimby,et al.  SN 2005ap: A Most Brilliant Explosion , 2007, 0709.0302.

[5]  E. O. Ofek,et al.  An unusually brilliant transient in the galaxy M85 , 2007, Nature.

[6]  Charles E. Hansen,et al.  SN 2006gy: Discovery of the Most Luminous Supernova Ever Recorded, Powered by the Death of an Extremely Massive Star like η Carinae , 2006, astro-ph/0612617.

[7]  J. Tonry,et al.  Determining the Type, Redshift, and Age of a Supernova Spectrum , 2006, astro-ph/0612512.

[8]  E. Ofek,et al.  Spitzer Observations of the New Luminous Red Nova M85 OT2006-1 , 2006, astro-ph/0612161.

[9]  J. Neill,et al.  The type Ia supernova SNLS-03D3bb from a super-Chandrasekhar-mass white dwarf star , 2006, Nature.

[10]  S. N. Raines,et al.  The FLAMINGOS Extragalactic Survey , 2005, astro-ph/0511249.

[11]  J. Neill,et al.  Gemini Spectroscopy of Supernovae from the Supernova Legacy Survey: Improving High-Redshift Supernova Selection and Classification , 2005, astro-ph/0509195.

[12]  B. Gaudi,et al.  Planetary Detection Efficiency of the Magnification 3000 Microlensing Event OGLE-2004-BLG-343 , 2005, astro-ph/0507079.

[13]  E. Ofek,et al.  Search for Low-Mass Exoplanets by Gravitational Microlensing at High Magnification , 2004, Science.

[14]  A. Robin,et al.  A synthetic view on structure and evolution of the Milky Way , 2003, astro-ph/0401052.

[15]  V. Castellani,et al.  Galactic models and white dwarf populations , 2002, astro-ph/0203077.

[16]  H. Ford The Hubble Space Telescope Advanced Camera for Surveys , 2000 .

[17]  Kentaro Aoki,et al.  FOCAS: faint object camera and spectrograph for the Subaru Telescope , 2000, Astronomical Telescopes and Instrumentation.

[18]  R. Hook,et al.  Drizzle: A Method for the Linear Reconstruction of Undersampled Images , 1998, astro-ph/9808087.

[19]  E. Greisen,et al.  The NRAO VLA Sky Survey , 1996 .

[20]  Harland W. Epps,et al.  THE KECK LOW-RESOLUTION IMAGING SPECTROMETER , 1995 .

[21]  B. Boyle The space distribution of DA white dwarfs. , 1989 .

[22]  Bohdan Paczynski,et al.  Gravitational microlensing by the galactic halo , 1986 .

[23]  Jonathan P. Williams,et al.  Accepted for Publication in the Astrophysical Journal on the Evolution of the Dense Core Mass Function , 1998 .