Structural, Chemical, and Dynamical Frustration: Origins of Superionic Conductivity in closo-Borate Solid Electrolytes

Li2B12H12, Na2B12H12, and their closo-borate relatives exhibit unusually high ionic conductivity, making them attractive as a new class of candidate electrolytes in solid-state Li- and Na-ion batteries. However, further optimization of these materials requires a deeper understanding of the fundamental mechanisms underlying ultrafast ion conduction. To this end, we use ab initio molecular dynamics simulations and density-functional calculations to explore the motivations for cation diffusion. We find that superionic behavior in Li2B12H12 and Na2B12H12 results from a combination of key structural, chemical, and dynamical factors that introduce intrinsic frustration and disorder. A statistical metric is used to show that the structures exhibit a high density of accessible interstitial sites and site types, which correlates with the flatness of the energy landscape and the observed cation mobility. Furthermore, cations are found to dock to specific anion sites, leading to a competition between the geometric s...

[1]  Anubhav Jain,et al.  Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis , 2012 .

[2]  N. Benedek,et al.  Enhancement of Ionic Transport in Complex Oxides through Soft Lattice Modes and Epitaxial Strain , 2015 .

[3]  Prateek Mehta,et al.  Effects of Sublattice Symmetry and Frustration on Ionic Transport in Garnet Solid Electrolytes. , 2016, Physical review letters.

[4]  S. Orimo,et al.  Fast sodium ionic conduction in Na2B10H10-Na2B12H12 pseudo-binary complex hydride and application to a bulk-type all-solid-state battery , 2017 .

[5]  A. Basu,et al.  Phase Transition and Soft Mode Behaviour in Superionic Copper Halides , 1984, June 1.

[6]  V. Stavila,et al.  Stabilizing lithium and sodium fast-ion conduction in solid polyhedral-borate salts at device-relevant temperatures , 2016 .

[7]  Philippe Knauth,et al.  Inorganic solid Li ion conductors: An overview , 2009 .

[8]  R. Williams Carboranes and boranes; polyhedra and polyhedral fragments , 1971 .

[9]  R. Černý,et al.  Superionic Conduction of Sodium and Lithium in Anion‐Mixed Hydroborates Na3BH4B12H12 and (Li0.7Na0.3)3BH4B12H12 , 2015 .

[10]  M. Aniya Superionicity as a local fluctuation of the chemical bond , 1994 .

[11]  Anubhav Jain,et al.  Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials , 2011 .

[12]  Prateek Mehta,et al.  Understanding Ionic Conductivity Trends in Polyborane Solid Electrolytes from Ab Initio Molecular Dynamics , 2017 .

[13]  M. Paskevicius,et al.  Multifunctionality of silver closo-boranes , 2017, Nature Communications.

[14]  M. Alcamí,et al.  Bonding in exohedral metal–fullerene cationic complexes , 2014 .

[15]  A. Putnis,et al.  Anion Rotation and Cation Diffusion in Low-Temperature Sodium Orthophosphate: Results from Solid-State NMR , 2001 .

[16]  Coupled motions of ions and electrons in some superionic conductors: An ab initio molecular dynamics study , 2006 .

[17]  A. Romero,et al.  Lithium adsorption on graphite from density functional theory calculations. , 2006, The journal of physical chemistry. B.

[18]  V. Stavila,et al.  Anion Reorientations in the Superionic Conducting Phase of Na2B12H12 , 2014 .

[19]  V. Stavila,et al.  Anion Reorientations and Cation Diffusion in LiCB11H12 and NaCB11H12: 1H, 7Li, and 23Na NMR Studies , 2015 .

[20]  J. Janek,et al.  Influence of Lattice Polarizability on the Ionic Conductivity in the Lithium Superionic Argyrodites Li6PS5X (X = Cl, Br, I). , 2017, Journal of the American Chemical Society.

[21]  V. Stavila,et al.  Complex high-temperature phase transitions in Li2B12H12 and Na2B12H12 , 2014 .

[22]  V. Stavila,et al.  Unparalleled Lithium and Sodium Superionic Conduction in Solid Electrolytes with Large Monovalent Cage-like Anions. , 2015, Energy & environmental science.

[23]  F. Ciucci,et al.  Structural origin of the superionic Na conduction in Na2B10H10closo-borates and enhanced conductivity by Na deficiency for high performance solid electrolytes , 2016 .

[24]  A. Lundén Evidence for and against the paddle-wheel mechanism of ion transport in superionic sulphate phases , 1988 .

[25]  K. Ngai Meyer–Neldel rule and anti Meyer–Neldel rule of ionic conductivity: Conclusions from the coupling model , 1998 .

[26]  R. Mcgreevy,et al.  Mechanisms of ionic conduction in Li2SO4 and LiNaSO4: Paddle wheel or percolation? , 1995 .

[27]  H. Hagemann,et al.  Synthesis of a Bimetallic Dodecaborate LiNaB12H12 with Outstanding Superionic Conductivity , 2015 .

[28]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[29]  Rabe,et al.  Optimized pseudopotentials. , 1990, Physical review. B, Condensed matter.

[30]  T. Schleid,et al.  Strukturelle Untersuchungen an Cs2[B12H12] , 2000 .

[31]  R. Černý,et al.  Modified Anion Packing of Na2B12H12 in Close to Room Temperature Superionic Conductors. , 2017, Inorganic chemistry.

[32]  S. Ong,et al.  Design Principles for Solid‐State Lithium Superionic Conductors , 2015 .

[33]  M. Paskevicius,et al.  First-order phase transition in the Li2B12H12 system. , 2013, Physical chemistry chemical physics : PCCP.

[34]  Nicola Marzari,et al.  Proton dynamics in superprotonic CsHSO(4) , 2007, cond-mat/0702575.

[35]  M. Salanne,et al.  Sparse Cyclic Excitations Explain the Low Ionic Conductivity of Stoichiometric Li_{7}La_{3}Zr_{2}O_{12}. , 2015, Physical review letters.

[36]  B. Wood,et al.  Role of Dynamically Frustrated Bond Disorder in a Li+ Superionic Solid Electrolyte , 2016 .

[37]  M. Jansen Volume Effect or Paddle‐Wheel Mechanism—Fast Alkali‐Metal Ionic Conduction in Solids with Rotationally Disordered Complex Anions , 1991 .

[38]  L. Pauling THE PRINCIPLES DETERMINING THE STRUCTURE OF COMPLEX IONIC CRYSTALS , 1929 .

[39]  L. Duchêne,et al.  A highly stable sodium solid-state electrolyte based on a dodeca/deca-borate equimolar mixture. , 2017, Chemical communications.

[40]  Jun Li,et al.  Basis Set Exchange: A Community Database for Computational Sciences , 2007, J. Chem. Inf. Model..

[41]  P. Politzer,et al.  Relationships between atomic chemical potentials, electrostatic potentials, and covalent radii , 1983 .

[42]  V. Stavila,et al.  Liquid‐Like Ionic Conduction in Solid Lithium and Sodium Monocarba‐closo‐Decaborates Near or at Room Temperature , 2016 .

[43]  V. Stavila,et al.  Stabilizing Superionic-Conducting Structures via Mixed-Anion Solid Solutions of Monocarba-closo-borate Salts , 2016 .

[44]  Tjerk P. Straatsma,et al.  NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations , 2010, Comput. Phys. Commun..

[45]  S. Orimo,et al.  The renaissance of hydrides as energy materials , 2017 .

[46]  S. Orimo,et al.  Bulk-Type All-Solid-State Lithium Batteries Using Complex Hydrides Containing Cluster-Anions , 2016 .

[47]  E. A. Secco Ion transport in sulfates: Percolation mechanism versus paddle-wheel mechanism , 1988 .

[48]  T. Schleid,et al.  Die Dodekahydro-closo-Dodekaborate M2[B12H12] der schweren Alkalimetalle (M+ = K+, Rb+, NH4+, Cs+) und ihre formalen Iodid-Addukte M3I[B12H12] (≡ MI · M2[B12H12])† , 2003 .

[49]  V. Stavila,et al.  Nuclear Magnetic Resonance Study of Atomic Motion in A2B12H12 (A = Na, K, Rb, Cs): Anion Reorientations and Na+ Mobility , 2013 .

[50]  M. Ikeda,et al.  Non-Arrhenius ionic conductivity in solid electrolytes: A theoretical model and its relation with the bonding nature , 2015 .

[51]  David Feller,et al.  The role of databases in support of computational chemistry calculations , 1996, J. Comput. Chem..

[52]  P. Heitjans,et al.  Is Geometric Frustration-Induced Disorder a Recipe for High Ionic Conductivity? , 2017, Journal of the American Chemical Society.

[53]  M. Klein,et al.  Nosé-Hoover chains : the canonical ensemble via continuous dynamics , 1992 .

[54]  W. Zhou,et al.  Role of Cation Size on the Structural Behavior of the Alkali-Metal Dodecahydro-closo-Dodecaborates , 2009 .

[55]  Anionic Oligomerization of Li2[B12H12] and Li[CB11H12]: An Experimental and Computational Study , 2013 .

[56]  S. Orimo,et al.  Sodium superionic conduction in Na2B12H12. , 2014, Chemical communications.

[57]  B. Melot,et al.  Influence of Rotational Distortions on Li+- and Na+-Intercalation in Anti-NASICON Fe2(MoO4)3 , 2016 .

[58]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[59]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[60]  K. Wade The structural significance of the number of skeletal bonding electron-pairs in carboranes, the higher boranes and borane anions, and various transition-metal carbonyl cluster compounds , 1971 .

[61]  Yizhou Zhu,et al.  Origin of fast ion diffusion in super-ionic conductors , 2017, Nature Communications.

[62]  Benjamin J Morgan,et al.  Relationships between atomic diffusion mechanisms and ensemble transport coefficients in crystalline polymorphs. , 2014, Physical review letters.

[63]  R. Ahuja,et al.  Borane derivatives: a new class of super- and hyperhalogens. , 2011, Chemphyschem : a European journal of chemical physics and physical chemistry.

[64]  E. A. Secco Paddle-wheel versus percolation model , 1993 .

[65]  R. Zidan,et al.  Bi-functional Li2B12H12 for energy storage and conversion applications: solid-state electrolyte and luminescent down-conversion dye , 2015 .

[66]  Peter Lamp,et al.  Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction. , 2015, Chemical reviews.

[67]  Nicola Marzari,et al.  Dynamical structure, bonding, and thermodynamics of the superionic sublattice in alpha-AgI. , 2006, Physical review letters.

[68]  Yanli Wang,et al.  Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009 .

[69]  Ekin D. Cubuk,et al.  Holistic computational structure screening of more than 12 000 candidates for solid lithium-ion conductor materials , 2017 .