Franklin H. Epstein Lecture. Cardiac development and implications for heart disease.

This review traces the development of the embryonic heart from a simple midline tube to the four-chambered structure of the adult heart. Recent research has uncovered findings that will influence the classification and management of congenital heart disease.

[1]  M. Capogrossi,et al.  Myocardial infarction induces embryonic reprogramming of epicardial c-kit(+) cells: role of the pericardial fluid. , 2010, Journal of molecular and cellular cardiology.

[2]  I. Weissman,et al.  Coronary arteries form by developmental reprogramming of venous cells , 2010, Nature.

[3]  J. C. Belmonte,et al.  Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation , 2010, Nature.

[4]  W. Pu,et al.  Genetic fate mapping demonstrates contribution of epicardium-derived cells to the annulus fibrosis of the mammalian heart. , 2010, Developmental biology.

[5]  Gertien J Smits,et al.  Development of the Pacemaker Tissues of the Heart , 2010, Circulation research.

[6]  H. Taegtmeyer,et al.  Return to the fetal gene program , 2010, Annals of the New York Academy of Sciences.

[7]  M. Kirby,et al.  The role of secondary heart field in cardiac development. , 2009, Developmental biology.

[8]  J. Epstein,et al.  Melanocyte‐like cells in the heart and pulmonary veins contribute to atrial arrhythmia triggers , 2009, The Journal of clinical investigation.

[9]  R. Lansford,et al.  Dynamic positional fate map of the primary heart-forming region. , 2009, Developmental biology.

[10]  Luigi Naldini,et al.  Exploiting and antagonizing microRNA regulation for therapeutic and experimental applications , 2009, Nature Reviews Genetics.

[11]  John McAnally,et al.  Cx30.2 enhancer analysis identifies Gata4 as a novel regulator of atrioventricular delay , 2009, Development.

[12]  K. Kaestner,et al.  Murine Jagged1/Notch signaling in the second heart field orchestrates Fgf8 expression and tissue-tissue interactions during outflow tract development. , 2009, The Journal of clinical investigation.

[13]  T. McKinsey,et al.  Targeting histone deacetylases for heart failure , 2009, Expert opinion on therapeutic targets.

[14]  M. Latronico,et al.  MicroRNAs and cardiac pathology , 2009, Nature Reviews Cardiology.

[15]  E. Topol,et al.  Molecular genetics of atrial fibrillation , 2009, Genome Medicine.

[16]  R. Schwartz,et al.  Genetic Fate Mapping Identifies Second Heart Field Progenitor Cells As a Source of Adipocytes in Arrhythmogenic Right Ventricular Cardiomyopathy , 2009, Circulation research.

[17]  Jeffrey E. Thatcher,et al.  Thymosin beta4 mediated PKC activation is essential to initiate the embryonic coronary developmental program and epicardial progenitor cell activation in adult mice in vivo. , 2009, Journal of molecular and cellular cardiology.

[18]  M. Buckingham,et al.  Conotruncal defects associated with anomalous pulmonary venous connections. , 2009, Archives of cardiovascular diseases.

[19]  P. Riley,et al.  Derivation of epicardium-derived progenitor cells (EPDCs) from adult epicardium. , 2009, Current protocols in stem cell biology.

[20]  K. Parker,et al.  Cardiogenesis and the Complex Biology of Regenerative Cardiovascular Medicine , 2008, Science.

[21]  M. Todaro,et al.  Inhibition of class I histone deacetylase with an apicidin derivative prevents cardiac hypertrophy and failure. , 2008, Cardiovascular research.

[22]  W. Pu,et al.  Reassessment of Isl1 and Nkx2-5 cardiac fate maps using a Gata4-based reporter of Cre activity. , 2008, Developmental biology.

[23]  E. Olson,et al.  Toward microRNA-based therapeutics for heart disease: the sense in antisense. , 2008, Circulation research.

[24]  Vincent C. Chen,et al.  Notch signaling respecifies the hemangioblast to a cardiac fate , 2008, Nature Biotechnology.

[25]  Bin Zhou,et al.  Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart , 2008, Nature.

[26]  Yunfu Sun,et al.  A myocardial lineage derives from Tbx18 epicardial cells , 2008, Nature.

[27]  Eric D. Adler,et al.  Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population , 2008, Nature.

[28]  R. Markwald,et al.  Epicardium-Derived Cells in Development of Annulus Fibrosis and Persistence of Accessory Pathways , 2008, Circulation.

[29]  Gordon Keller,et al.  Differentiation of Embryonic Stem Cells to Clinically Relevant Populations: Lessons from Embryonic Development , 2008, Cell.

[30]  M. Santini,et al.  Identification of Myocardial and Vascular Precursor Cells in Human and Mouse Epicardium , 2007, Circulation research.

[31]  Richard P Harvey,et al.  Pitx2c and Nkx2-5 Are Required for the Formation and Identity of the Pulmonary Myocardium , 2007, Circulation research.

[32]  Lila R Collins,et al.  Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts , 2007, Nature Biotechnology.

[33]  Catherine A. Risebro,et al.  Thymosin β‐4 Is Essential for Coronary Vessel Development and Promotes Neovascularization via Adult Epicardium , 2007, Annals of the New York Academy of Sciences.

[34]  Jeffrey Robbins,et al.  Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury , 2007, Nature Medicine.

[35]  Eric E. Smith,et al.  Variants conferring risk of atrial fibrillation on chromosome 4q25 , 2007, Nature.

[36]  Xiaoxia Qi,et al.  Control of Stress-Dependent Cardiac Growth and Gene Expression by a MicroRNA , 2007, Science.

[37]  W. Wurst,et al.  Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3β activity , 2007, Nature Medicine.

[38]  Catherine A. Risebro,et al.  Thymosin β4 induces adult epicardial progenitor mobilization and neovascularization , 2007, Nature.

[39]  D. Clapham,et al.  In Brief , 2006, Nature Reviews Drug Discovery.

[40]  Yunfu Sun,et al.  Multipotent Embryonic Isl1 + Progenitor Cells Lead to Cardiac, Smooth Muscle, and Endothelial Cell Diversification , 2006, Cell.

[41]  R. Roberts,et al.  A Dynamic Epicardial Injury Response Supports Progenitor Cell Activity during Zebrafish Heart Regeneration , 2006, Cell.

[42]  A. Fischer,et al.  Developmental patterning of the cardiac atrioventricular canal by Notch and Hairy-related transcription factors , 2006, Development.

[43]  S. Kattman,et al.  Multipotent flk-1+ cardiovascular progenitor cells give rise to the cardiomyocyte, endothelial, and vascular smooth muscle lineages. , 2006, Developmental cell.

[44]  E. Olson,et al.  Suppression of Class I and II Histone Deacetylases Blunts Pressure-Overload Cardiac Hypertrophy , 2006, Circulation.

[45]  J. Pérez-Pomares,et al.  In vivo and in vitro analysis of the vasculogenic potential of avian proepicardial and epicardial cells † , 2006, Developmental dynamics : an official publication of the American Association of Anatomists.

[46]  M. Jeong,et al.  Inhibition of Histone Deacetylation Blocks Cardiac Hypertrophy Induced by Angiotensin II Infusion and Aortic Banding , 2005, Circulation.

[47]  J. Epstein,et al.  Cardiac neural crest. , 2005, Seminars in cell & developmental biology.

[48]  M. Kirby,et al.  Ablation of the secondary heart field leads to tetralogy of Fallot and pulmonary atresia. , 2005, Developmental biology.

[49]  C. Maslen Molecular genetics of atrioventricular septal defects , 2004, Current opinion in cardiology.

[50]  W. Giles,et al.  Nkx2-5 Pathways and Congenital Heart Disease Loss of Ventricular Myocyte Lineage Specification Leads to Progressive Cardiomyopathy and Complete Heart Block , 2004, Cell.

[51]  Yunqing Shi,et al.  Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. , 2003, Developmental cell.

[52]  J. Epstein,et al.  Cardiac hypertrophy and histone deacetylase-dependent transcriptional repression mediated by the atypical homeodomain protein Hop. , 2003, The Journal of clinical investigation.

[53]  E. Olson,et al.  Dose-dependent Blockade to Cardiomyocyte Hypertrophy by Histone Deacetylase Inhibitors* , 2003, Journal of Biological Chemistry.

[54]  Jonathan C. Cohen,et al.  GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5 , 2003, Nature.

[55]  Ferhaan Ahmad,et al.  Transgenic Mice Overexpressing Mutant PRKAG2 Define the Cause of Wolff-Parkinson-White Syndrome in Glycogen Storage Cardiomyopathy , 2003, Circulation.

[56]  A. Lassar,et al.  Erythropoietin and retinoic acid, secreted from the epicardium, are required for cardiac myocyte proliferation. , 2003, Developmental biology.

[57]  M. Keating,et al.  Heart Regeneration in Zebrafish , 2002, Science.

[58]  Tao Chang,et al.  Epicardial induction of fetal cardiomyocyte proliferation via a retinoic acid-inducible trophic factor. , 2002, Developmental biology.

[59]  J. Pérez-Pomares,et al.  Experimental studies on the spatiotemporal expression of WT1 and RALDH2 in the embryonic avian heart: a model for the regulation of myocardial and valvuloseptal development by epicardially derived cells (EPDCs). , 2002, Developmental biology.

[60]  N. Peters,et al.  Atrial fibrillation: strategies to control, combat, and cure , 2002, The Lancet.

[61]  M. Buckingham,et al.  The arterial pole of the mouse heart forms from Fgf10-expressing cells in pharyngeal mesoderm. , 2001, Developmental cell.

[62]  M. Kirby,et al.  Conotruncal myocardium arises from a secondary heart field. , 2001, Development.

[63]  J. Pérez-Pomares,et al.  The Origin, Formation and Developmental Significance of the Epicardium: A Review , 2001, Cells Tissues Organs.

[64]  J. Seidman,et al.  Mutations in the cardiac transcription factor NKX2.5 affect diverse cardiac developmental pathways. , 1999, The Journal of clinical investigation.

[65]  R. Poelmann,et al.  Smooth muscle cells and fibroblasts of the coronary arteries derive from epithelial-mesenchymal transformation of the epicardium , 1999, Anatomy and Embryology.

[66]  J. Seidman,et al.  Congenital heart disease caused by mutations in the transcription factor NKX2-5. , 1998, Science.

[67]  T. Mikawa,et al.  Pericardial mesoderm generates a population of coronary smooth muscle cells migrating into the heart along with ingrowth of the epicardial organ. , 1996, Developmental biology.

[68]  S. Solomon,et al.  The clinical and genetic spectrum of the Holt-Oram syndrome (heart-hand syndrome) , 1994, The New England journal of medicine.

[69]  B. Lorell,et al.  Selective changes in cardiac gene expression during compensated hypertrophy and the transition to cardiac decompensation in rats with chronic aortic banding. , 1993, Circulation research.

[70]  T. Mikawa,et al.  Retroviral analysis of cardiac morphogenesis: discontinuous formation of coronary vessels. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[71]  T. Parker,et al.  Peptide growth factors can provoke "fetal" contractile protein gene expression in rat cardiac myocytes. , 1990, The Journal of clinical investigation.

[72]  M. Kirby,et al.  Neural crest cells contribute to normal aorticopulmonary septation. , 1983, Science.

[73]  A. Moorman,et al.  Development of the cardiac conduction system: a matter of chamber development. , 2003, Novartis Foundation symposium.

[74]  I. Weissman,et al.  The biology of hematopoietic stem cells. , 1995, Annual review of cell and developmental biology.