Stability of explicit subcycling time integration with linear interpolation for first-order finite element semidiscretizations

An explicit subcycling time integration algorithm based on an element partition is presented for first-order finite element systems. This method uses linear interpolation to compute intermediate values at nodes in the subdomains integrated with the larger time steps. Stability of the algorithm for the two partition cases is analyzed by showing that the eigenvalues of the amplification matrix for the total integration cycle are not greater than one in absolute value. Using this stability criterion, critical time steps for the element subdomains are derived in terms of element eigenvalues. Several numerical examples are considered to compare the accuracy of the method with previously developed subcycling algorithms to numerically verify the stability analysis.

[1]  A. Mizukami,et al.  Variable explicit finite element methods for unsteady heat conduction equations , 1986 .

[2]  Thomas J. R. Hughes,et al.  Implicit-Explicit Finite Elements in Transient Analysis: Stability Theory , 1978 .

[3]  T. Belytschko,et al.  Computational Methods for Transient Analysis , 1985 .

[4]  Ted Belytschko,et al.  Simultaneous Relaxation in Structural Dynamics , 1981 .

[5]  B. Noble Applied Linear Algebra , 1969 .

[6]  J. Donea,et al.  Nodal partition of explicit finite element methods for unsteady diffusion problems , 1988 .

[7]  Patrick Smolinski,et al.  Stability of variable explicit time integration for unsteady diffusion problems , 1991 .

[8]  T. Belytschko,et al.  Explicit multi-time step integration for first and second order finite element semidiscretizations , 1993 .

[9]  Ted Belytschko,et al.  Multi-time-step integration using nodal partitioning , 1988 .

[10]  T. Belytschko,et al.  Stability of an explicit multi-time step integration algorithm for linear structural dynamics equations , 1996 .

[11]  Mark O. Neal,et al.  Explicit-explicit subcycling with non-integer time step ratios for structural dynamic systems , 1989 .

[12]  Alf Samuelsson,et al.  Finite Elements in Nonlinear Mechanics , 1978 .

[13]  Wing Kam Liu,et al.  Stability of multi-time step partitioned integrators for first-order finite element systems , 1985 .

[14]  Wing Kam Liu,et al.  Convergence of an element‐partitioned subcycling algorithm for the semi‐discrete heat equation , 1987 .

[15]  T. Belytschko,et al.  Stability of explicit‐implicit mesh partitions in time integration , 1978 .

[16]  K. C. Park,et al.  Partitioned Transient Analysis Procedures for Coupled-Field Problems. , 1979 .

[17]  Thomas J. R. Hughes,et al.  IMPLICIT-EXPLICIT FINITE ELEMENTS IN TRANSIENT ANALYSIS , 1978 .

[18]  Y. Y. Lu,et al.  Convergence and stability analyses of multi-time step algorithm for parabolic systems , 1993 .

[19]  W. Daniel A study of the stability of subcycling algorithms in structural dynamics , 1998 .