Modelling the effect of habitat fragmentation on range expansion in a butterfly

There is an increasing need for conservation programmes to make quantitative predictions of biodiversity responses to changed environments. Such predictions will be particularly important to promote species recovery in fragmented landscapes, and to understand and facilitate distribution responses to climate change. Here, we model expansion rates of a test species (a rare butterfly, Hesperia comma) in five landscapes over 18 years (generations), using a metapopulation model (the incidence function model). Expansion rates increased with the area, quality and proximity of habitat patches available for colonization, with predicted expansion rates closely matching observed rates in test landscapes. Habitat fragmentation constrained expansion, but in a predictable way, suggesting that it will prove feasible both to understand variation in expansion rates and to develop conservation programmes to increase rates of range expansion in such species.

[1]  M. Nowak,et al.  Habitat destruction and the extinction debt , 1994, Nature.

[2]  D. Roy,et al.  The distributions of a wide range of taxonomic groups are expanding polewards , 2006 .

[3]  D. Roy,et al.  Species richness changes lag behind climate change , 2006, Proceedings of the Royal Society B: Biological Sciences.

[4]  Atte Moilanen,et al.  PATCH OCCUPANCY MODELS OF METAPOPULATION DYNAMICS: EFFICIENT PARAMETER ESTIMATION USING IMPLICIT STATISTICAL INFERENCE , 1999 .

[5]  C. Thomas,et al.  Changing habitat associations of a thermally constrained species, the silver-spotted skipper butterfly, in response to climate warming. , 2006, The Journal of animal ecology.

[6]  Robert J. Wilson,et al.  Minimum viable metapopulation size, extinction debt, and the conservation of a declining species. , 2007, Ecological applications : a publication of the Ecological Society of America.

[7]  Ilkka Hanski,et al.  Metapopulation dynamics and conservation: A spatially explicit model applied to butterflies , 1994 .

[8]  Jordi Bascompte,et al.  Extinction thresholds: insights from simple models , 2003 .

[9]  R. Clarke,et al.  Ecology and declining status of the silver-spotted skipper butterfly (Hesperia comma) in Britain , 1986 .

[10]  Ilkka Hanski,et al.  Multiple equilibria in metapopulation dynamics , 1995, Nature.

[11]  J. Travis Climate change and habitat destruction: a deadly anthropogenic cocktail , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[12]  Brian Huntley,et al.  Impacts of landscape structure on butterfly range expansion , 2001 .

[13]  Jorge X Velasco-Hernández,et al.  Extinction Thresholds and Metapopulation Persistence in Dynamic Landscapes , 2000, The American Naturalist.

[14]  Alan Hastings,et al.  Habitat Loss, Fragmentation, and Restoration , 1999 .

[15]  O. Phillips,et al.  Extinction risk from climate change , 2004, Nature.

[16]  Ilkka Hanski,et al.  Slow response of plant species richness to habitat loss and fragmentation. , 2005, Ecology letters.

[17]  Chris D. Thomas,et al.  Partial recovery of a skipper butterfly (Hesperia comma) from population refuges : lessons for conservation in a fragmented landscape , 1993 .

[18]  Otso Ovaskainen,et al.  The metapopulation capacity of a fragmented landscape , 2000, Nature.

[19]  Chris D. Thomas,et al.  Effects of habitat patch size and isolation on dispersal by Hesperia comma butterflies : implications for metapopulation structure , 1996 .

[20]  T. Brereton,et al.  The Re-expansion and Improving Status of the Silver-spotted Skipper Butterfly (hesperia Comma) in Britain: a Metapopulation Success Story , 2005 .

[21]  O. Ovaskainen,et al.  Extinction Debt at Extinction Threshold , 2002 .

[22]  M. Warren,et al.  Distributions of occupied and vacant butterfly habitats in fragmented landscapes , 1992, Oecologia.

[23]  R. Lensink Range expansion of raptors in Britain and the Netherlands since the 1960s : testing an individual-based diffusion model , 1997 .

[24]  É. Malaquin-Pavan,et al.  [The distribution of drugs]. , 2008, Soins. Gerontologie.

[25]  B. Goodger,et al.  The quality and isolation of habitat patches both determine where butterflies persist in fragmented landscapes , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[26]  Otso Ovaskainen,et al.  From Individual Behavior to Metapopulation Dynamics: Unifying the Patchy Population and Classic Metapopulation Models , 2004, The American Naturalist.

[27]  Odo Diekmann,et al.  The velocity of spatial population expansion , 1990 .

[28]  A. Balmford,et al.  Atlantic forest extinctions , 1996, Nature.

[29]  D. Wascher,et al.  Climate change meets habitat fragmentation: linking landscape and biogeographical scale levels in research and conservation , 2004 .

[30]  L. Conradt,et al.  Ecological and evolutionary processes at expanding range margins , 2001 .

[31]  J. K. Hill,et al.  Rapid responses of British butterflies to opposing forces of climate and habitat change , 2001, Nature.

[32]  Atte Moilanen,et al.  SIMPLE CONNECTIVITY MEASURES IN SPATIAL ECOLOGY , 2002 .

[33]  中村 康弘,et al.  The Millennium Atlas of Butterflies in Britain and Ireland, Asher, J., Warren, M., Fox, R., Harding, P., Jeffcoate, G. and Jeffcoate, S., 26×21cm, 433頁(原色図版多数), 発行:Oxford University Press, UK., 発行日:2001年3月, 定価:$50(£30) , 2001 .

[34]  J. Gamarra,et al.  Metapopulation Ecology , 2007 .

[35]  David R. B. Stockwell,et al.  Future projections for Mexican faunas under global climate change scenarios , 2002, Nature.

[36]  M. Warren,et al.  Flight areas of British butterflies: assessing species status and decline , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[37]  Johan Olausson,et al.  The Millennium Atlas of Butterflies in Britain and Ireland , 2007 .

[38]  I. Hanski A Practical Model of Metapopulation Dynamics , 1994 .

[39]  Atte Moilanen,et al.  The equilibrium assumption in estimating the parameters of metapopulation models. , 2000 .