High-efficiency and low-jitter Silicon single-photon avalanche diodes based on nanophotonic absorption enhancement

Silicon single-photon avalanche diode (SPAD) is a core device for single-photon detection in the visible and the near-infrared range, and widely used in many applications. However, due to limits of the structure design and device fabrication for current silicon SPADs, the key parameters of detection befficiency and timing jitter are often forced to compromise. Here, we propose a nanostructured silicon SPAD, which achieves high detection efficiency with excellent timing jitter simultaneously over a broad spectral range. The optical and electric simulations show significant performance enhancement compared with conventional silicon SPAD devices. This nanostructured devices can be easily fabricated and thus well suited for practical applications.

[1]  Daniel Faria,et al.  Avalanche diodes as photon-counting detectors in astronomical photometry , 2000, Astronomical Telescopes and Instrumentation.

[2]  N. Nightingale,et al.  A new silicon avalanche photodiode photon counting detector module for astronomy , 1990 .

[3]  James D. Spinhirne,et al.  Micro pulse lidar , 1993, IEEE Trans. Geosci. Remote. Sens..

[4]  D. P. Fromm,et al.  Methods of single-molecule fluorescence spectroscopy and microscopy , 2003 .

[5]  A. Lacaita,et al.  Physics and numerical simulation of single photon avalanche diodes , 1997 .

[6]  R. Hadfield Single-photon detectors for optical quantum information applications , 2009 .

[7]  S. Fan,et al.  Thermodynamic upper bound on broadband light coupling with photonic structures. , 2012, Physical review letters.

[8]  Shanhui Fan,et al.  S4 : A free electromagnetic solver for layered periodic structures , 2012, Comput. Phys. Commun..

[9]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[10]  D. Ong,et al.  Theoretical analysis of breakdown probabilities and jitter in single-photon avalanche diodes , 2007 .

[11]  Angelo Gulinatti,et al.  Modeling photon detection efficiency and temporal response of single photon avalanche diodes , 2009, Optics + Optoelectronics.

[12]  Lloyd M. Davis,et al.  Single photon avalanche diode for single molecule detection , 1993, Optical Society of America Annual Meeting.

[13]  Andrea L. Lacaita,et al.  Double epitaxy improves single-photon avalanche diode performance , 1989 .

[14]  A. Lacaita,et al.  Avalanche photodiodes and quenching circuits for single-photon detection. , 1996, Applied optics.

[15]  Andrea L. Lacaita,et al.  AVALANCHE TRANSIENTS IN SHALLOW P-N JUNCTIONS BIASED ABOVE BREAKDOWN , 1995 .

[16]  Shanhui Fan,et al.  Large-area free-standing ultrathin single-crystal silicon as processable materials. , 2013, Nano letters.

[17]  T. Ishihara,et al.  Quasiguided modes and optical properties of photonic crystal slabs , 2002 .

[18]  H. Weinfurter,et al.  Violation of Bell's Inequality under Strict Einstein Locality Conditions , 1998, quant-ph/9810080.

[19]  Zongfu Yu,et al.  Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays. , 2009, Nano letters.

[20]  J. David,et al.  Statistics of Avalanche Current Buildup Time in Single-Photon Avalanche Diodes , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[21]  Angelo Gulinatti,et al.  Improving the performance of silicon single-photon avalanche diodes , 2011, Defense + Commercial Sensing.

[22]  E. Yablonovitch Statistical ray optics , 1982 .

[23]  B. Vojnovic Advanced Time‐Correlated Single Photon Counting Techniques , 2006 .

[24]  Zongfu Yu,et al.  Fundamental limit of nanophotonic light trapping in solar cells , 2010, Proceedings of the National Academy of Sciences.

[25]  D. G. Kocher,et al.  Three-dimensional imaging laser radar with a photon-counting avalanche photodiode array and microchip laser. , 2002, Applied optics.

[26]  Yi Cui,et al.  Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings. , 2012, Nano letters.

[27]  Lifeng Li,et al.  New formulation of the Fourier modal method for crossed surface-relief gratings , 1997 .

[28]  M. Ghioni,et al.  Resonant-Cavity-Enhanced Single-Photon Avalanche Diodes on Reflecting Silicon Substrates , 2008, IEEE Photonics Technology Letters.

[29]  A. Lacaita,et al.  Mean gain of avalanche photodiodes in a dead space model , 1996 .

[30]  Jin-Hua Huang,et al.  Silicon Nitride Nanopillars and Nanocones Formed by Nickel Nanoclusters and Inductively Coupled Plasma Etching for Solar Cell Application , 2009 .

[31]  M. Green,et al.  Light trapping properties of pyramidally textured surfaces , 1987 .