Fluence Threshold for Photothermal Bubble Generation Using Plasmonic Nanoparticles

Under nano- to femtosecond pulsed illumination at their plasmonic resonance wavelength, metal nanoparticles efficiently absorb the incident light energy that is subsequently converted into heat. In a liquid environment, with sufficiently high pulse fluences (light energy per unit area), this heat generation may result in the local formation of a transient nanobubble. This phenomenon has been the subject of a decade of investigations and is at the basis of numerous applications from cancer therapy to photoacoustic imaging. The aim of this article is to clarify the question of the fluence threshold required for bubble formation. Using a Runge-Kutta-4 numerical algorithm modeling the heat diffusion around a spherical gold nanoparticle, we numerically investigate the influence of the nanoparticle diameter, pulse duration (from the femto- to the nanosecond range), wavelength, and Kapitza resistivity in order to explain the observations reported in the literature.

[1]  G. Plessen,et al.  Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water. , 2006, The Journal of chemical physics.

[2]  H. Rigneault,et al.  Time-harmonic optical heating of plasmonic nanoparticles , 2014 .

[3]  J. G. Solé,et al.  Nanoparticles for photothermal therapies. , 2014, Nanoscale.

[4]  M. Meunier,et al.  From Thermo- to Plasma-Mediated Ultrafast Laser-Induced Plasmonic Nanobubbles , 2014 .

[5]  Feng Gao,et al.  In vivo molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages. , 2010, ACS nano.

[6]  H. Richardson,et al.  Local temperature determination of optically excited nanoparticles and nanodots. , 2011, Nano letters.

[7]  Mostafa A. El-Sayed,et al.  Effect of the Lattice Crystallinity on the Electron−Phonon Relaxation Rates in Gold Nanoparticles , 2007 .

[8]  H. Löwen,et al.  A microscopic mechanism for shock‐wave generation in pulsed‐laser‐heated colloidal suspensions , 1992 .

[9]  Romain Quidant,et al.  Thermo‐plasmonics: using metallic nanostructures as nano‐sources of heat , 2013 .

[10]  A. Henglein,et al.  Electron-phonon coupling dynamics in very small (between 2 and 8 nm diameter) Au nanoparticles , 2000 .

[11]  Dieter Braun,et al.  Why molecules move along a temperature gradient , 2006, Proceedings of the National Academy of Sciences.

[12]  M. Mostafavi,et al.  Optical limitation induced by gold clusters: Mechanism and efficiency , 2001 .

[13]  Rebekah A Drezek,et al.  Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles. , 2010, ACS nano.

[14]  Takayuki Uwada,et al.  Studies on the interaction of pulsed lasers with plasmonic gold nanoparticles toward light manipulation, heat management, and nanofabrication , 2012 .

[15]  W. Steen Absorption and Scattering of Light by Small Particles , 1999 .

[16]  Paul V Braun,et al.  Thermal conductance of hydrophilic and hydrophobic interfaces. , 2006, Physical review letters.

[17]  Xunbin Wei,et al.  Selective cell targeting with light-absorbing microparticles and nanoparticles. , 2003, Biophysical journal.

[18]  Shikuan Yang,et al.  Theory and experiment on particle trapping and manipulation via optothermally generated bubbles. , 2014, Lab on a chip.

[19]  G. Baffou,et al.  Nanoplasmonics for Chemistry , 2014 .

[20]  Johannes Boneberg,et al.  Thermodynamics of nanosecond nanobubble formation at laser-excited metal nanoparticles , 2011 .

[21]  Sarit K. Das,et al.  Probing the Gold Nanorod−Ligand−Solvent Interface by Plasmonic Absorption and Thermal Decay , 2008 .

[22]  M. Maillard,et al.  Electron-phonon scattering in metal clusters. , 2003, Physical review letters.

[23]  Romain Quidant,et al.  Plasmon-Assisted Optofluidics , 2013 .

[24]  A. Henglein,et al.  Size dependent properties of Au particles: Coherent excitation and dephasing of acoustic vibrational modes , 1999 .

[25]  T. Biben,et al.  Nanobubbles around plasmonic nanoparticles: Thermodynamic analysis. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  Vivek M. Prabhu,et al.  Single Laser Pulse Effects on Suspended-Au-Nanoparticle Size Distributions and Morphology , 2013 .

[27]  M. Orrit,et al.  Explosive formation and dynamics of vapor nanobubbles around a continuously heated gold nanosphere , 2014, 1407.1221.

[28]  K. Hamad-Schifferli,et al.  Effect of ligands on thermal dissipation from gold nanorods. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[29]  Thierry Biben,et al.  Kinetics of nanobubble generation around overheated nanoparticles. , 2014, Physical review letters.

[30]  D. Werner,et al.  Picosecond-to-nanosecond dynamics of plasmonic nanobubbles from pump-probe spectral measurements of aqueous colloidal gold nanoparticles. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[31]  Thomas F. George,et al.  Ultrashort Laser Pulse Heating of Nanoparticles: Comparison of Theoretical Approaches , 2008 .

[32]  Romain Quidant,et al.  Thermoplasmonics modeling: A Green's function approach , 2010 .

[33]  Alois Würger,et al.  Thermal non-equilibrium transport in colloids , 2010 .

[34]  Serge Monneret,et al.  Super-Heating and Micro-Bubble Generation around Plasmonic Nanoparticles under cw Illumination , 2014 .

[35]  Steven T. Wereley,et al.  Photothermal heating enabled by plasmonic nanostructures for electrokinetic manipulation and sorting of particles. , 2014, ACS nano.

[36]  E. Lukianova-Hleb,et al.  Influence of transient environmental photothermal effects on optical scattering by gold nanoparticles. , 2009, Nano letters.

[37]  Mostafa A. El-Sayed,et al.  Electron dynamics in gold and gold–silver alloy nanoparticles: The influence of a nonequilibrium electron distribution and the size dependence of the electron–phonon relaxation , 1999 .

[38]  L. Oddershede,et al.  Direct measurements of heating by electromagnetically trapped gold nanoparticles on supported lipid bilayers. , 2010, ACS nano.

[39]  E. Lukianova-Hleb,et al.  Experimental techniques for imaging and measuring transient vapor nanobubbles. , 2012, Applied physics letters.

[40]  Frank Cichos,et al.  Single Molecules Trapped by Dynamic Inhomogeneous Temperature Fields. , 2015, Nano letters.

[41]  Tony Jun Huang,et al.  A Reconfigurable Plasmofluidic Lens , 2013, Nature Communications.

[42]  Frédéric Caupin,et al.  Cavitation in water: a review , 2006 .

[43]  Dmitri O. Lapotko,et al.  Laser Pulse Duration Is Critical For the Generation of Plasmonic Nanobubbles , 2014, Langmuir : the ACS journal of surfaces and colloids.

[44]  Hervé Rigneault,et al.  Femtosecond-pulsed optical heating of gold nanoparticles , 2011 .

[45]  Michel Meunier,et al.  Plasma mediated off-resonance plasmonic enhanced ultrafast laser-induced nanocavitation. , 2012, Nano letters.