Asymptotically exact minimax estimation in sup-norm for anisotropic Hölder classes

where f is an unknown function, n > 1, σ > 0 is known and W is a standard Brownian sheet in [0, 1]d. We wish to estimate the function f given a realization y = { Yt, t ∈ [0, 1]d } . This is known as the Gaussian white noise problem and has been studied in several papers starting with Ibragimov and Hasminskii (1981). We suppose that f belongs to a d-dimensional anisotropic Hölder class Σ(β̃, L) for β = (β1, . . . , βd) ∈ (0, 1]d and L = (L1, . . . , Ld) such that 0 < Li < ∞. This class is defined by :

[1]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[2]  David R. Cox,et al.  The Theory of Stochastic Processes , 1967, The Mathematical Gazette.

[3]  A. V. Skorohod,et al.  The theory of stochastic processes , 1974 .

[4]  S. Kotz,et al.  The Theory Of Stochastic Processes I , 1974 .

[5]  J. K. Benedetti On the Nonparametric Estimation of Regression Functions , 1977 .

[6]  C. J. Stone,et al.  Optimal Global Rates of Convergence for Nonparametric Regression , 1982 .

[7]  R. Adler An introduction to continuity, extrema, and related topics for general Gaussian processes , 1990 .

[8]  O. Lepskii,et al.  On problems of adaptive estimation in white Gaussian noise , 1992 .

[9]  D. Donoho Asymptotic minimax risk for sup-norm loss: Solution via optimal recovery , 1994 .

[10]  A. Korostelev An Asymptotically Minimax Regression Estimator in the Uniform Norm up to Exact Constant , 1994 .

[11]  M. Lifshits Gaussian Random Functions , 1995 .

[12]  Vladimir I. Piterbarg,et al.  Asymptotic Methods in the Theory of Gaussian Processes and Fields , 1995 .

[13]  Rainer von Sachs,et al.  Wavelet thresholding in anisotropic function classes and application to adaptive estimation of evolutionary spectra , 1997 .

[14]  P. Massart,et al.  Risk bounds for model selection via penalization , 1999 .

[15]  D. Picard,et al.  Non Linear Estimation in Anisotropic Multiindex Denoising , 1999 .

[16]  M. Nussbaum,et al.  The asymptotic minimax constant for sup-norm loss in nonparametric density estimation , 1999 .

[17]  A. Tsybakov,et al.  Asymptotically exact nonparametric hypothesis testing in sup-norm and at a fixed point , 2000 .

[18]  Alexandre B. Tsybakov,et al.  Sharp Adaptive Estimation of Linear Functionals , 2001 .

[19]  G. Kerkyacharian,et al.  Nonlinear estimation in anisotropic multi-index denoising , 2001 .

[20]  Karine Bertin,et al.  Minimax exact constant in sup-norm for nonparametric regression with random design , 2004 .