Using interpolation to simplify explicit model predictive control

Multi parametric quadratic programming gives a full off-line solution to a time varying quadratic programming (QP) problem arising during constrained predictive control. However, coding and implementation of this solution may be more burdensome than solving the original QP. This paper presents a two degree of freedom algorithm, which achieves a large decrease in both the online computation and data storage requirements with negligible deterioration of performance. Extensive simulation results are given to back this claim.

[1]  J. A. Rossiter,et al.  Computationally efficient algorithms for constraint handling with guaranteed stability and near optimality , 2001 .

[2]  David W. Clarke,et al.  Generalized predictive control - Part I. The basic algorithm , 1987, Autom..

[3]  Alberto Bemporad,et al.  The explicit linear quadratic regulator for constrained systems , 2003, Autom..

[4]  Alberto Bemporad,et al.  Evaluation of piecewise affine control via binary search tree , 2003, Autom..

[5]  James B. Rawlings,et al.  Constrained linear quadratic regulation , 1998, IEEE Trans. Autom. Control..

[6]  J. A. Rossiter,et al.  Applying predictive control to a fossil-fired power station , 2002 .

[7]  C. R. Cutler,et al.  Dynamic matrix control¿A computer control algorithm , 1979 .

[8]  Mark Rice,et al.  A numerically robust state-space approach to stable-predictive control strategies , 1998, Autom..

[9]  A. Bemporad,et al.  Efficient on-line computation of constrained optimal control , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[10]  Mato Baotic,et al.  Multi-Parametric Toolbox (MPT) , 2004, HSCC.

[11]  David Q. Mayne,et al.  Correction to "Constrained model predictive control: stability and optimality" , 2001, Autom..

[12]  K. T. Tan,et al.  Linear systems with state and control constraints: the theory and application of maximal output admissible sets , 1991 .

[13]  J. A. Méndez,et al.  State‐space approach to interpolation in MPC , 2000 .

[14]  J. A. Rossiter,et al.  Stability proof for computationally efficient predictive control in the uncertain case , 2003, Proceedings of the 2003 American Control Conference, 2003..