Themis Regio, Venus: Evidence for recent (?) volcanism from VIRTIS data

Abstract Themis Regio is interpreted to be a hotspot rise underlain by one or more mantle plumes. Many volcanic features in the Themis region have high emissivity anomalies in Venus Express Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) data. Other high emissivity anomalies have been found to correspond to volcanic flows interpreted to be relatively recent (Smrekar et al. [2010a] Science 328, 605–608). Similarly, at Themis the majority of the high emissivity anomalies closely correspond to flows associated with coronae and volcanic edifices, consistent with the interpretation that they represent recent volcanism. These volcanic features also have negative Bouguer gravity anomalies indicating low density at depth, consistent with hot mantle upwellings leading to pressure release melting. In addition, several volcanic features at Themis have low emissivity anomalies, suggestive of more evolved compositions. Combining geologic mapping data with gravity and emissivity data provide support that Themis is an active hotspot swell, with associated long-lived, volcanoes and coronae that are likely associated with small-scale upwellings.

[1]  J. Head,et al.  Sapas Mons, Venus: evolution of a large shield volcano , 1994 .

[2]  W. Leng,et al.  More constraints on internal heating rate of the Earth's mantle from plume observations , 2009 .

[3]  Steven W. Squyres,et al.  Global distribution and characteristics of coronae and related features on Venus: Implications for origin and relation to mantle processes , 1992 .

[4]  A. Davaille,et al.  Transient high-Rayleigh-number thermal convection with large viscosity variations , 1993, Journal of Fluid Mechanics.

[5]  P. McGovern,et al.  Kunhild and Ereshkigal, an extinct hot‐spot region on Venus , 2000 .

[6]  Bruce A. Campbell,et al.  Surface formation rates and impact crater densities on Venus , 1999 .

[7]  A. Jellinek,et al.  Transient mantle convection on Venus: The paradoxical coexistence of highlands and coronae in the BAT region , 2007 .

[8]  Boris A. Ivanov,et al.  Cratering on Venus: Models and Observations , 1997 .

[9]  G. Schubert,et al.  Evidence for Retrograde Lithospheric Subduction on Venus , 1992, Science.

[10]  P. Tackley,et al.  Atmosphere/mantle coupling and feedbacks on Venus , 2014 .

[11]  S. Smrekar,et al.  Admittance Survey of Type 1 Coronae on Venus: Implications for Elastic Thickness , 2004 .

[12]  S. Smrekar,et al.  Experimental and observational evidence for plume-induced subduction on Venus , 2017 .

[13]  Martha S. Gilmore,et al.  VIRTIS emissivity of Alpha Regio, Venus, with implications for tessera composition , 2015 .

[14]  Peter G. Ford,et al.  Venus topography and kilometer‐scale slopes , 1992 .

[15]  Suzanne E. Smrekar,et al.  Constraints on mantle plumes on Venus: Implications for volatile history , 2012 .

[16]  D. Senske,et al.  Large Topographic Rises on Venus: Implications for Mantle , 1995 .

[17]  S. Smrekar,et al.  Corona Formation and Heat Loss on Venus by Coupled Upwelling and Delamination , 1997 .

[18]  S. Solomon,et al.  A magmatic loading model for coronae on Venus , 2007 .

[19]  Franck Montmessin,et al.  Variations of sulphur dioxide at the cloud top of Venus’s dynamic atmosphere , 2012, Nature Geoscience.

[20]  R. Hilst,et al.  Upwellings from a deep mantle reservoir filtered at the 660 km phase transition in thermo-chemical convection models and implications for intra-plate volcanism , 2009 .

[21]  P. Ford,et al.  Features on Venus generated by plate boundary processes , 1992 .

[22]  J. Guest,et al.  Resurfacing styles and rates on Venus: assessment of 18 venusian quadrangles , 2004 .

[23]  Paul J. Tackley,et al.  Simulating the thermochemical magmatic and tectonic evolution of Venus's mantle and lithosphere: Two-dimensional models , 2012 .

[24]  B. Fegley,et al.  Basalt Oxidation and the Formation of Hematite on the Surface of Venus , 1994 .

[25]  S. J. Sutley,et al.  USGS Digital Spectral Library splib06a , 2007 .

[26]  P. McGovern,et al.  New constraints on volcano-tectonic evolution of large volcanic edifices on Venus from stereo topography–derived strain estimates , 2014 .

[27]  A. Davaille,et al.  On the fate of thermally buoyant mantle plumes at density interfaces , 2007 .

[28]  S. Smrekar,et al.  Large topographic rises, coronae, large flow fields, and large volcanoes on Venus: Evidence for mantle plumes? , 2005 .

[29]  Louis-Noel Moresi,et al.  Non-Newtonian Stagnant Lid Convection and Magmatic Resur facing on Venus☆ , 1999 .

[30]  F. Nimmo Why does Venus lack a magnetic field , 2002 .

[31]  M. Zolotov,et al.  Chemical processes on the planetary surface. , 1992 .

[32]  J. Head,et al.  The Lada Terra rise and Quetzalpetlatl Corona: A region of long-lived mantle upwelling and recent volcanic activity on Venus , 2010 .

[33]  G. Klingelhöfer,et al.  The Rate of Pyrite Decomposition on the Surface of Venus , 1995 .

[34]  S. Smrekar,et al.  Coronae formation on Venus via extension and lithospheric instability , 2012 .

[35]  O. Nikolaeva,et al.  Geochemical constraints on petrogenic processes on Venus , 1999 .

[36]  G. Houseman,et al.  Rayleigh–Taylor instability as a mechanism for corona formation on Venus , 2006 .

[37]  Masaki Ogawa,et al.  Mantle evolution in Venus due to magmatism and phase transitions: From punctuated layered convection to whole‐mantle convection , 2014 .

[38]  J. Head,et al.  Magma reservoirs and neutral buoyancy zones on Venus: Implications for the formation and evolution of volcanic landforms , 1992 .

[39]  T. Gerya Plume-induced crustal convection: 3D thermomechanical model and implications for the origin of novae and coronae on Venus , 2014 .

[40]  S. Smrekar,et al.  Origin of Corona-Dominated Topographic Rises on Venus , 1999 .

[41]  Yu. A. Surkov,et al.  Exploration of Terrestrial Planets from Spacecraft: Instrumentation, Investigation, Interpretation , 1990 .

[42]  V. Hansen,et al.  Geologic mapping of tectonic planets , 2000 .

[43]  R. Phillips,et al.  Ejecta correlations with spatial crater density and Venus resurfacing history , 1995 .

[44]  Raymond E. Arvidson,et al.  Impact craters and Venus resurfacing history , 1992 .

[45]  S. Squyres,et al.  The morphology and evolution of coronae on Venus , 1992 .

[46]  Seiji Sugita,et al.  On observing the compositional variability of the surface of Venus using nightside near‐infrared thermal radiation , 2003 .

[47]  P. Drossart,et al.  Recent Hotspot Volcanism on Venus from VIRTIS Emissivity Data , 2010, Science.

[48]  J. Aubele,et al.  Relation of Major Volcanic Center Concentration on Venus to Global Tectonic Patterns , 1993, Science.

[49]  R. Phillips,et al.  Tectonics and Volcanism of Eastern Aphrodite Terra, Venus: No Subduction, No Spreading , 1993, Science.

[50]  D. Crown,et al.  Emplacement and composition of steep‐sided domes on Venus , 2000 .

[51]  G. Mcgill Hotspot evolution and Venusian tectonic style , 1994 .

[52]  F. Scholten,et al.  Geologic interpretation of the near-infrared images of the surface taken by the Venus Monitoring Camera, Venus Express , 2012 .

[53]  Giuseppe Piccioni,et al.  Evidence for anomalous cloud particles at the poles of Venus , 2008 .

[54]  James B. Garvin,et al.  Venus - The nature of the surface from Venera panoramas , 1984 .

[55]  James W. Head,et al.  Venus volcanism: Classification of volcanic features and structures, associations, and global distribution from Magellan data , 1992 .

[56]  Ellen R. Stofan,et al.  A New View of the Stratigraphic History of Venus , 1999 .

[57]  Giuseppe Piccioni,et al.  Venus surface thermal emission at 1 μm in VIRTIS imaging observations: Evidence for variation of crust and mantle differentiation conditions , 2008 .

[58]  Giuseppe Piccioni,et al.  Surface brightness variations seen by VIRTIS on Venus Express and implications for the evolution of the Lada Terra region, Venus , 2008 .

[59]  É. Stutzmann,et al.  Convective patterns under the Indo-Atlantic « box » , 2005 .

[60]  Suzanne E. Smrekar,et al.  Gravity analysis of Parga and Hecate chasmata: Implications for rift and corona formation , 2010 .

[61]  A. Treiman,et al.  Venus surface mineralogy - Observational and theoretical constraints , 1992 .

[62]  S. Smrekar,et al.  Coronae of Parga Chasma, Venus , 2004 .

[63]  D. Koch,et al.  Neutrally buoyant diapirs: A model for Venus coronae , 1996 .

[64]  S. Zhong,et al.  Constraints of the topography, gravity and volcanism on Venusian mantle dynamics and generation of plate tectonics , 2013 .

[65]  W. Leng,et al.  Controls on plume heat flux and plume excess temperature , 2008 .

[66]  Jean Besse,et al.  Three distinct types of hotspots in the Earth's mantle , 2002 .

[67]  S. Solomon,et al.  Growth of large volcanoes on Venus: Mechanical models and implications for structural evolution , 1998 .

[68]  M. Manga,et al.  The influence of interior mantle temperature on the structure of plumes: Heads for Venus, Tails for the Earth , 2002 .

[69]  J. Head,et al.  Steep-sided domes on Venus: Characteristics, geologic setting, and eruption conditions from Magellan data , 1992 .

[70]  T. Imamura,et al.  Elucidating the rate of volcanism on venus: Detection of lava eruptions using near-infrared observations , 2001 .

[71]  Peter G. Ford,et al.  An Improved 360 Degree and Order Model of Venus Topography , 1999 .

[72]  J. Zimbelman Image resolution and evaluation of genetic hypotheses for planetary landscapes , 2001 .

[73]  Marko Markov,et al.  Styles of tectonic deformations on Venus: Analysis of Venera 15 and 16 data , 1986 .

[74]  R. Phillips,et al.  Venusian highlands: Geoid to topography ratios and their implications: Earth and Planetary Science L , 1991 .

[75]  S. Smrekar,et al.  LARGE VOLCANIC RISES ON VENUS , 2022, Venus II.

[76]  James W. Head,et al.  The geologic history of Venus: A stratigraphic view , 1998 .

[77]  P. Grindrod,et al.  The geological evolution of Atai Mons, Venus: a volcano–corona ‘hybrid’ , 2006, Journal of the Geological Society.

[78]  Olivier Grasset,et al.  Thermal convection in a volumetrically heated, infinite Prandtl number fluid with strongly temperature‐dependent viscosity: Implications for planetary thermal evolution , 1998 .

[79]  G. Schubert,et al.  A Global Survey of Possible Subduction Sites on Venus , 1995 .

[80]  I. Romeo Monte Carlo models of the interaction between impact cratering and volcanic resurfacing on Venus: The effect of the Beta-Atla-Themis anomaly , 2013 .

[81]  D. Crisp,et al.  Ground‐based near‐infrared observations of the Venus nightside: The thermal structure and water abundance near the surface , 1996 .