Grain-Boundary Design of L1 2 Ordered Intermetallic Alloys

[1]  C. Liu,et al.  Microstructures and mechanical properties of Ni3Al alloyed with iron additions , 1987, Metallurgical and Materials Transactions A.

[2]  E. Schulson,et al.  In-situ straining of Ni3Al in a transmission electron microscope , 1987 .

[3]  G. M. Bond,et al.  Effect of boron on the mechanism of strain transfer across grain boundaries in Ni_3Al , 1987 .

[4]  A. Taub,et al.  Composition dependence of ductility in boron-doped, nickel-base L12 alloys , 1987 .

[5]  T. P. Weihs,et al.  The strength, hardness and ductility of Ni3Al with and without boron , 1987 .

[6]  K. Vedula,et al.  The role of boron in ductilizing Ni3Al , 1987 .

[7]  Painter,et al.  Effects of segregation on grain-boundary cohesion: A density-functional cluster model of boron and sulfur in nickel. , 1987, Physical review letters.

[8]  Eberhart,et al.  Localized grain-boundary electronic states and intergranular fracture. , 1987, Physical review letters.

[9]  T. Takasugi,et al.  Improved ductility and strength of Ni3Al compound by beryllium addition , 1986 .

[10]  C. L. White,et al.  The effect of thermal history on intergranular boron segregation and fracture morphology of substoichiometric Ni 3Al , 1986 .

[11]  Shyh-Chin Huang,et al.  Carbon effects in rapidly solidified Ni_3Al , 1986 .

[12]  T. P. Weihs,et al.  The effect of grain size on the yield strength of Ni3Al , 1985 .

[13]  A. DasGupta,et al.  Positron annihilation study of boron-doped Ni3Al☆ , 1985 .

[14]  T. Takasugi,et al.  Electronic and structural studies of grain boundary strength and fracture in Ll2 ordered alloys—II. On the effect of third elements in Ni3Al alloy , 1985 .

[15]  T. Takasugi,et al.  Electronic and structural studies of grain boundary strength and fracture in L12 ordered alloys—I. On binary A3B alloys , 1985 .

[16]  E. George,et al.  Intergranular fracture and grain boundary chemistry of Ni3Al and Ni3Si , 1985 .

[17]  T. Masumoto,et al.  Grain boundary fracture of L12 type intermetallic compound Ni3Ai , 1985 .

[18]  C. L. White,et al.  Effect of boron on grain-boundaries in Ni3Al† , 1985 .

[19]  C. L. White,et al.  Surface and grain boundary segregation in relation to intergranular fracture: Boron and sulfur in Ni3Al , 1984 .

[20]  S.-C. Huang,et al.  Boron extended solubility and strengthening potency in rapidly solidified Ni3Al , 1984 .

[21]  K. Sickafus,et al.  Observation of the effect of solute segregation on grain boundary structure , 1984 .

[22]  A. Inoue,et al.  Microstructure and mechanical properties of rapidly quenched L11 alloys in Ni-Al-X systems , 1983 .

[23]  R. Mosković Mechanical properties of precipitation-strengthened Ni-Al-Cr alloy based on an NiAl intermetallic compound , 1978 .

[24]  C. L. White,et al.  Sulfur segregation to grain boundaries in Ni3Al and Ni3(AI,Ti) alloys , 1978, Metallurgical and Materials Transactions A.

[25]  C. Mcmahon Intergranular fracture in steels , 1976 .

[26]  J. H. Westbrook,et al.  Oxygen-induced grain boundary hardening in NiGa , 1964 .

[27]  A. Taub,et al.  Ductility in boron-doped, nickel-base L12 alloys processed by rapid solidification , 1986 .

[28]  O. Izumi,et al.  Application of the selected area channeling pattern method to the study of intergranular fracture in Ni3Al , 1986 .

[29]  Shyh-Chin Huang,et al.  Improved Strength and Ductility of Ni3Al by Boron Modification and Rapid Solidification , 1984 .

[30]  T. Watanabe,et al.  An approach to grain boundary design for strong and ductile polycrystals. , 1984 .

[31]  O. Izumi,et al.  On the Ductility of the Intermetallic Compound Ni 3 Al , 1977 .