Synthesis of Artificial Magnetic Conductors Using Structure-Based Evolutionary Design

An evolutionary programming approach, the so-called structure based evolutionary design, is applied to the synthesis of planar periodic electronic band gap in order to obtain an artificial magnetic conductor surface. We show that this strategy, in conjunction with a flexible aperture-oriented approach, allows for obtaining new and effective structures. This almost unique ability is exploited to obtain an artificial magnetic conductor periodic surface with a bandwidth larger than the most popular surfaces known so far.

[1]  Thomas Bäck,et al.  Evolutionary computation: Toward a new philosophy of machine intelligence , 1997, Complex..

[2]  Mario Sorolla,et al.  Enhanced patch-antenna performance by suppressing surface waves using photonic-bandgap substrates , 1999 .

[3]  David B. Fogel,et al.  Evolutionary Computation: Toward a New Philosophy of Machine Intelligence (IEEE Press Series on Computational Intelligence) , 2006 .

[4]  D. Wilton,et al.  Electromagnetic scattering by surfaces of arbitrary shape , 1980 .

[5]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[6]  Tatsuo Itoh,et al.  A novel TEM waveguide using uniplanar compact photonic-bandgap (UC-PBG) structure , 1999 .

[7]  T. K. Wu Frequency selective surface and gridarray , 2014 .

[8]  Yang Hao,et al.  Design of Low-Profile High-Gain EBG Resonator Antennas Using a Genetic Algorithm , 2007, IEEE Antennas and Wireless Propagation Letters.

[9]  David B. Fogel,et al.  Evolutionary Computation: Towards a New Philosophy of Machine Intelligence , 1995 .

[10]  J. Vardaxoglou,et al.  Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas , 2005, IEEE Transactions on Antennas and Propagation.

[11]  G. Mazzarella,et al.  A Flexible Full-Wave Analysis of Multilayered AMC Using an Aperture Oriented Approach , 2007 .

[12]  S. Costanzo,et al.  Synthesis of Slot Arrays on Integrated Waveguides , 2010, IEEE Antennas and Wireless Propagation Letters.

[13]  G. Mazzarella,et al.  Evolutionary Design of Wide-Band Parasitic Dipole Arrays , 2011, IEEE Transactions on Antennas and Propagation.

[14]  G. Montisci,et al.  Design of Dielectric-Covered Planar Arrays of Longitudinal Slots , 2009, IEEE Antennas and Wireless Propagation Letters.

[15]  Ben A. Munk,et al.  Frequency Selective Surfaces: Theory and Design , 2000 .

[16]  Hung-Hsuan Lin,et al.  Metamaterial enhanced high gain antenna for WiMAX application , 2007, TENCON 2007 - 2007 IEEE Region 10 Conference.

[17]  Giuseppe Mazzarella,et al.  Aperture oriented approach to the analysis of artificial magnetic conductors and first-order circuit model validation , 2006, 2006 12th International Symposium on Antenna Technology and Applied Electromagnetics and Canadian Radio Sciences Conference.

[18]  Z. Bayraktar,et al.  GA optimized ultra-thin tunable EBG AMC surfaces , 2006, 2006 IEEE Antennas and Propagation Society International Symposium.

[19]  Peter Kovács,et al.  Design and optimization of periodic structures for simultaneous EBG and AMC operation , 2010, 15th Conference on Microwave Techniques COMITE 2010.

[20]  G. Montisci,et al.  Design of Circularly Polarized Waveguide Slot Linear Arrays , 2006, IEEE Transactions on Antennas and Propagation.

[21]  R. Langley,et al.  Dual-Band Wearable Textile Antenna on an EBG Substrate , 2009, IEEE Transactions on Antennas and Propagation.

[22]  Hu Yang,et al.  Efficient Evaluation of the External Mutual Coupling in Dielectric-Covered Waveguide Slot Arrays , 2012 .

[23]  Allen W. Glisson,et al.  Electromagnetic Scattering by Surface of Arbitrary Shape. , 1980 .

[24]  M. Hakkak,et al.  Design of a novel AMC with little sensitivity to the angle of incidence and very compact size , 2006, 2006 IEEE Antennas and Propagation Society International Symposium.

[25]  Design of artificial magnetic ground planes (AMGs) utilizing frequency selective surfaces embedded in multilayer structures with electric and magnetic losses , 2003, IEEE Antennas and Propagation Society International Symposium. Digest. Held in conjunction with: USNC/CNC/URSI North American Radio Sci. Meeting (Cat. No.03CH37450).

[26]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1992, Artificial Intelligence.

[27]  Ladislau Matekovits,et al.  Multioctave Frequency Selective Surface Reflector for Ultrawideband Antennas , 2011, IEEE Antennas and Wireless Propagation Letters.

[28]  R. Mittra,et al.  Techniques for analyzing frequency selective surfaces-a review , 1988, Proc. IEEE.

[29]  D. Sievenpiper,et al.  High-impedance electromagnetic surfaces with a forbidden frequency band , 1999 .

[30]  Giorgio Montisci,et al.  ACCURATE MODELING OF COUPLING JUNCTIONS IN DIELECTRIC COVERED WAVEGUIDE SLOT ARRAYS , 2011 .

[31]  Giorgio Montisci,et al.  Structure-Based Evolutionary Programming Design of Broadband Wire Antennas , 2013 .

[32]  Y. Rahmat-Samii,et al.  A novel strategy for broadband and miniaturized EBG designs: hybrid MTL theory and PSO algorithm , 2007, 2007 IEEE Antennas and Propagation Society International Symposium.