Solving the hydrodynamic formulation of quantum mechanics: A parallel MLS method

This article documents the first implementation of a parallel algorithm for solving the governing equations of the hydrodynamic formulation of quantum mechanics. The algorithm employs a quantum trajectory method (QTM) based on the serial algorithm introduced by Wyatt and Lopreore. The OpenMP API is employed to parallelize the code across the quantum trajectories in a shared memory environment. An outline of the parallel algorithm is provided; the analytical solution for a moving free particle is used to verify the solution obtained by the parallel algorithm. Further validation against several of the results obtained by Wyatt and Lopreore is also provided. The parallel speedups and runtimes are presented, and several performance issues are noted. Finally, the results of a preliminary accuracy study examining a moving free particle are provided. © 2001 John Wiley & Sons, Inc. Int J Quantum Chem, 2001

[1]  T. Liszka An interpolation method for an irregular net of nodes , 1984 .

[2]  Herschel Rabitz,et al.  Multidimensional wave packet dynamics within the fluid dynamical formulation of the Schrodinger equation , 1998 .

[3]  Robert E. Wyatt Quantum wavepacket dynamics with trajectories: wavefunction synthesis along quantum paths , 1999 .

[4]  Attila Askar,et al.  Quantum fluid dynamics in the Lagrangian representation and applications to photodissociation problems , 1999 .

[5]  T. Liszka,et al.  hp-Meshless cloud method , 1996 .

[6]  James T. Cushing,et al.  Bohmian mechanics and quantum theory: an appraisal , 1996 .

[7]  D. Bohm A SUGGESTED INTERPRETATION OF THE QUANTUM THEORY IN TERMS OF "HIDDEN" VARIABLES. II , 1952 .

[8]  Attila Askar,et al.  Time‐Dependent Perturbation Calculations Based on the Hydrodynamic Analogy to Quantum Mechanics , 1971 .

[9]  B. M. Deb,et al.  Erratum: The role of single-particle density in chemistry , 1981 .

[10]  J. M. Keiser,et al.  A New Class of Time Discretization Schemes for the Solution of Nonlinear PDEs , 1998 .

[11]  Waldyr A. Rodrigues,et al.  Nonlocality in quantum physics , 1999 .

[12]  Robert E. Wyatt,et al.  Time propagation and spectral filters in quantum dynamics: A Hermite polynomial perspective , 1999 .

[13]  P. Holland The Quantum Theory of Motion , 1993 .

[14]  Basil J. Hiley,et al.  A quantum potential description of one-dimensional time-dependent scattering from square barriers and square wells , 1982 .

[15]  L. Broglie,et al.  Interference and Corpuscular Light , 1926, Nature.

[16]  Eric R. Bittner Quantum tunneling dynamics using hydrodynamic trajectories , 2000 .

[17]  Mark A Fleming,et al.  Meshless methods: An overview and recent developments , 1996 .

[18]  Deb,et al.  New quadratic nondifferential Thomas-Fermi-Dirac-type equation for atoms. , 1988, Physical review. A, General physics.

[19]  Y. Partom,et al.  Quantum Rate Theory for Solids. II. One-Dimensional Tunneling Effects , 1969 .

[20]  R. Wyatt,et al.  Quantum Wave Packet Dynamics with Trajectories , 1999 .

[21]  B. Deb,et al.  Densities, density-functionals and electron fluids , 1982 .

[22]  Deb,et al.  Density-functional and hydrodynamical approach to ion-atom collisions through a new generalized nonlinear Schrödinger equation. , 1989, Physical review. A, General physics.

[23]  Eric R. Bittner,et al.  Integrating the quantum Hamilton–Jacobi equations by wavefront expansion and phase space analysis , 2000 .

[24]  Pratim K. Chattaraj,et al.  Stability analysis of finite difference schemes for quantum mechanical equations of motion , 1987 .

[25]  B. Hiley The Undivided Universe , 1993 .

[26]  R. Wyatt Quantum wave packet dynamics with trajectories: Application to reactive scattering , 1999 .

[27]  Ted Belytschko,et al.  Partitioned rational Runge Kutta for parabolic systems , 1984 .

[28]  Robert E. Wyatt,et al.  Quantum trajectories for resonant scattering , 2001 .

[29]  C. Eckart The Penetration of a Potential Barrier by Electrons , 1930 .

[30]  B. Deb,et al.  The role of single-particle density in chemistry , 1981 .

[31]  R. A. Uras,et al.  Generalized multiple scale reproducing kernel particle methods , 1996 .

[32]  B. Deb,et al.  Schrödinger fluid dynamics of many‐electron systems in a time‐dependent density‐functional framework , 1982 .

[33]  P. Holland,et al.  Uniqueness of paths in quantum mechanics , 1999 .

[34]  Péter Kacsuk,et al.  Advanced computer architectures - a design space approach , 1997, International computer science series.

[35]  Serge Haroche,et al.  Entanglement, Decoherence and the Quantum/Classical Boundary , 1998 .

[36]  Pratim K. Chattaraj,et al.  Quantum fluid density functional theory of time-dependent phenomena: Ion-atom collisions , 1988 .

[37]  Sheldon Goldstein,et al.  Quantum Theory without Observers—Part One , 1998 .

[38]  Askar,et al.  Solution of the quantum fluid dynamical equations with radial basis function interpolation , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[39]  J. H. Weiner,et al.  Wave Packet Dynamics on Two-Dimensional Quadratic Potential Surfaces , 1971 .

[40]  Robert E. Wyatt,et al.  Quantum wave packet dynamics with trajectories: Implementation with distributed approximating functionals , 2000 .

[41]  P. Lancaster,et al.  Surfaces generated by moving least squares methods , 1981 .

[42]  T. Belytschko,et al.  Nodal integration of the element-free Galerkin method , 1996 .

[43]  R. Wyatt,et al.  Quantum wave packet dynamics with trajectories: Implementation with adaptive Lagrangian grids , 2000 .

[44]  S. Goldstein,et al.  Hypersurface Bohm-Dirac models , 1999 .