Greedy Virtual Coordinates for Geographic Routing

We present a new approach for generating virtual coordinates that produces usable coordinates quickly and improves the routing performance of existing geographic routing algorithms. Starting from a set of initial coordinates derived from a set of elected perimeter nodes, greedy embedding spring coordinates (GSpring) detects possible dead ends and uses a modified spring relaxation algorithm to incrementally adjust virtual coordinates to increase the convexity of voids in the virtual routing topology. This reduces the probability that packets will end up in dead ends during greedy forwarding. The coordinates derived by GSpring achieve routing stretch that is up to 50% lower than that for NoGeo, the best existing algorithm for deriving virtual Euclidean coordinates for geographic routing. For realistic network topologies with obstacles, GSpring coordinates achieves from between 10 to 15% better routing stretch than actual physical coordinates.

[1]  Brad Karp,et al.  GPSR: greedy perimeter stateless routing for wireless networks , 2000, MobiCom '00.

[2]  Ivan Stojmenovic,et al.  Routing with Guaranteed Delivery in Ad Hoc Wireless Networks , 1999, DIALM '99.

[3]  Chenyang Lu,et al.  Spatiotemporal multicast in sensor networks , 2003, SenSys '03.

[4]  Ben Leong,et al.  Path vector face routing: geographic routing with local face information , 2005, 13TH IEEE International Conference on Network Protocols (ICNP'05).

[5]  David R. Karger,et al.  A scalable location service for geographic ad hoc routing , 2000, MobiCom '00.

[6]  David C. Moore,et al.  Robust distributed network localization with noisy range measurements , 2004, SenSys '04.

[7]  Lili Qiu,et al.  S4: Small State and Small Stretch Routing Protocol for Large Wireless Sensor Networks , 2007, NSDI.

[8]  L. El Ghaoui,et al.  Convex position estimation in wireless sensor networks , 2001, Proceedings IEEE INFOCOM 2001. Conference on Computer Communications. Twentieth Annual Joint Conference of the IEEE Computer and Communications Society (Cat. No.01CH37213).

[9]  Yuval Shavitt,et al.  Big-Bang simulation for embedding network distances in Euclidean space , 2003, IEEE INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE Cat. No.03CH37428).

[10]  Tomasz Imielinski,et al.  GeoCast—geographic addressing and routing , 1997, MobiCom '97.

[11]  David A. Maltz,et al.  Dynamic Source Routing in Ad Hoc Wireless Networks , 1994, Mobidata.

[12]  Robert Tappan Morris,et al.  Vivaldi: a decentralized network coordinate system , 2004, SIGCOMM '04.

[13]  Andy Hopper,et al.  The Anatomy of a Context-Aware Application , 1999, Wirel. Networks.

[14]  Young-Jin Kim,et al.  Geographic routing made practical , 2005, NSDI.

[15]  Robert Tappan Morris,et al.  Geographic Routing Without Planarization , 2006, NSDI.

[16]  Leonidas J. Guibas,et al.  GLIDER: gradient landmark-based distributed routing for sensor networks , 2005, Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies..

[17]  Hui Zhang,et al.  Towards global network positioning , 2001, IMW '01.

[18]  Scott Shenker,et al.  Geographic routing without location information , 2003, MobiCom '03.

[19]  Ben Leong,et al.  New techniques for geographic routing , 2006 .

[20]  James Newsome,et al.  GEM: Graph EMbedding for routing and data-centric storage in sensor networks without geographic information , 2003, SenSys '03.

[21]  Stefano Chessa,et al.  GPS free coordinate assignment and routing in wireless sensor networks , 2005, Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies..

[22]  B. R. Badrinath,et al.  Ad hoc positioning system (APS) using AOA , 2003, IEEE INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE Cat. No.03CH37428).

[23]  Guoliang Xing,et al.  On greedy geographic routing algorithms in sensing-covered networks , 2004, MobiHoc '04.

[24]  Nitin H. Vaidya,et al.  Geocasting in mobile ad hoc networks: location-based multicast algorithms , 1999, Proceedings WMCSA'99. Second IEEE Workshop on Mobile Computing Systems and Applications.

[25]  Mikkel Thorup,et al.  Compact routing schemes , 2001, SPAA '01.

[26]  Yuval Shavitt,et al.  Minimizing Recovery State in Geographic Ad Hoc Routing , 2009, IEEE Transactions on Mobile Computing.

[27]  Christos H. Papadimitriou,et al.  On a conjecture related to geometric routing , 2004, Theor. Comput. Sci..

[28]  Charles E. Perkins,et al.  Highly dynamic Destination-Sequenced Distance-Vector routing (DSDV) for mobile computers , 1994, SIGCOMM.

[29]  Seth J. Teller,et al.  The cricket compass for context-aware mobile applications , 2001, MobiCom '01.

[30]  Yan Zhang,et al.  Geometric ad-hoc routing: of theory and practice , 2003, PODC '03.

[31]  Jan M. Rabaey,et al.  Robust Positioning Algorithms for Distributed Ad-Hoc Wireless Sensor Networks , 2002, USENIX Annual Technical Conference, General Track.

[32]  David E. Culler,et al.  Beacon vector routing: scalable point-to-point routing in wireless sensornets , 2005, NSDI.

[33]  A. Harter,et al.  The Anatomy of a ContextAware Application , 1999, MobiCom 1999.