A Survey on Recent Progress in the Theory of Evolutionary Algorithms for Discrete Optimization

The theory of evolutionary computation for discrete search spaces has made significant progress since the early 2010s. This survey summarizes some of the most important recent results in this research area. It discusses fine-grained models of runtime analysis of evolutionary algorithms, highlights recent theoretical insights on parameter tuning and parameter control, and summarizes the latest advances for stochastic and dynamic problems. We regard how evolutionary algorithms optimize submodular functions, and we give an overview over the large body of recent results on estimation of distribution algorithms. Finally, we present the state of the art of drift analysis, one of the most powerful analysis technique developed in this field.

[1]  Carsten Witt,et al.  Self-Adjusting Evolutionary Algorithms for Multimodal Optimization , 2020, Algorithmica.

[2]  Dirk Sudholt,et al.  Time Complexity Analysis of Randomized Search Heuristics for the Dynamic Graph Coloring Problem , 2021, Algorithmica.

[3]  Andrew M. Sutton,et al.  Runtime analysis of RLS and the (1+1) EA for the chance-constrained knapsack problem with correlated uniform weights , 2021, GECCO.

[4]  Frank Neumann,et al.  Advanced Ore Mine Optimisation under Uncertainty Using Evolution , 2021, ArXiv.

[5]  Frank Neumann,et al.  Heuristic strategies for solving complex interacting stockpile blending problem with chance constraints , 2021, GECCO.

[6]  Benjamin Doerr,et al.  Lower Bounds for Non-Elitist Evolutionary Algorithms via Negative Multiplicative Drift , 2020, Evolutionary Computation.

[7]  Benjamin Doerr,et al.  The Univariate Marginal Distribution Algorithm Copes Well with Deception and Epistasis , 2020, Evolutionary Computation.

[8]  Amin Karbasi,et al.  Adaptivity in Adaptive Submodularity , 2019, COLT.

[9]  Benjamin Doerr,et al.  Self-Adjusting Mutation Rates with Provably Optimal Success Rules , 2019, Algorithmica.

[10]  Markus Wagner,et al.  Evolutionary algorithms and submodular functions: benefits of heavy-tailed mutations , 2018, Natural Computing.

[11]  Weijie Zheng,et al.  Sharp Bounds for Genetic Drift in Estimation of Distribution Algorithms , 2020, IEEE Transactions on Evolutionary Computation.

[12]  Dirk Sudholt,et al.  The Complex Parameter Landscape of the Compact Genetic Algorithm , 2020, Algorithmica.

[13]  Benjamin Doerr,et al.  Bivariate estimation-of-distribution algorithms can find an exponential number of optima , 2020, GECCO.

[14]  F. Neumann,et al.  Maximizing Submodular or Monotone Functions under Partition Matroid Constraints by Multi-objective Evolutionary Algorithms , 2020, PPSN.

[15]  Benjamin Doerr,et al.  First Steps Towards a Runtime Analysis When Starting With a Good Solution , 2020, PPSN.

[16]  Frank Neumann,et al.  Optimising Monotone Chance-Constrained Submodular Functions Using Evolutionary Multi-Objective Algorithms , 2020, PPSN.

[17]  Benjamin Doerr,et al.  Runtime Analysis of a Heavy-Tailed (1+(λ, λ)) Genetic Algorithm on Jump Functions , 2020, PPSN.

[18]  Vahid Roostapour,et al.  Evolutionary Multi-Objective Optimization for the Dynamic Knapsack Problem , 2020, ArXiv.

[19]  Benjamin Doerr,et al.  From understanding genetic drift to a smart-restart parameter-less compact genetic algorithm , 2020, GECCO.

[20]  Benjamin Doerr,et al.  Fixed-Target Runtime Analysis , 2020, Algorithmica.

[21]  Frank Neumann,et al.  Specific single- and multi-objective evolutionary algorithms for the chance-constrained knapsack problem , 2020, GECCO.

[22]  Yang Yu,et al.  An Efficient Evolutionary Algorithm for Subset Selection with General Cost Constraints , 2020, AAAI.

[23]  Benjamin Doerr Does Comma Selection Help to Cope with Local Optima? , 2020, GECCO.

[24]  Per Kristian Lehre,et al.  Self-Adaptation in Nonelitist Evolutionary Algorithms on Discrete Problems With Unknown Structure , 2020, IEEE Transactions on Evolutionary Computation.

[25]  Dirk Sudholt,et al.  More effective randomized search heuristics for graph coloring through dynamic optimization , 2020, GECCO.

[26]  Frank Neumann,et al.  Evolutionary Image Transition and Painting Using Random Walks , 2020, Evolutionary Computation.

[27]  Frank Neumann,et al.  Evolutionary Bi-objective Optimization for the Dynamic Chance-Constrained Knapsack Problem Based on Tail Bound Objectives , 2020, ECAI.

[28]  Emo Welzl,et al.  An Optimal Decentralized $(Δ+ 1)$-Coloring Algorithm , 2020, ESA.

[29]  Andrew M. Sutton,et al.  Optimization of Chance-Constrained Submodular Functions , 2019, AAAI.

[30]  Bradley Alexander,et al.  A Hybrid Cooperative Co-evolution Algorithm Framework for Optimising Power Take Off and Placements of Wave Energy Converters , 2019, Inf. Sci..

[31]  Mojgan Pourhassan,et al.  Improved Runtime Results for Simple Randomised Search Heuristics on Linear Functions with a Uniform Constraint , 2019, Algorithmica.

[32]  Benjamin Doerr,et al.  The Runtime of the Compact Genetic Algorithm on Jump Functions , 2019, Algorithmica.

[33]  Benjamin Doerr,et al.  Multiplicative Up-Drift , 2019, Algorithmica.

[34]  Mojgan Pourhassan,et al.  Runtime Analysis of RLS and (1+1) EA for the Dynamic Weighted Vertex Cover Problem , 2019, Theor. Comput. Sci..

[35]  Benjamin Doerr,et al.  Significance-Based Estimation-of-Distribution Algorithms , 2018, IEEE Transactions on Evolutionary Computation.

[36]  Benjamin Doerr,et al.  Runtime Analysis for Self-adaptive Mutation Rates , 2018, Algorithmica.

[37]  Mojgan Pourhassan,et al.  Analysis of Evolutionary Algorithms in Dynamic and Stochastic Environments , 2018, Theory of Evolutionary Computation.

[38]  Johannes Lengler,et al.  Drift Analysis , 2017, Theory of Evolutionary Computation.

[39]  Morteza Monemizadeh,et al.  Dynamic Submodular Maximization , 2020, NeurIPS.

[40]  Mojgan Pourhassan,et al.  Parameterized Analysis of Multiobjective Evolutionary Algorithms and the Weighted Vertex Cover Problem , 2019, Evolutionary Computation.

[41]  Andrew M. Sutton,et al.  Runtime analysis of the (1 + 1) evolutionary algorithm for the chance-constrained knapsack problem , 2019, FOGA '19.

[42]  Per Kristian Lehre,et al.  On the limitations of the univariate marginal distribution algorithm to deception and where bivariate EDAs might help , 2019, FOGA '19.

[43]  Mike Preuss,et al.  Exploratory landscape analysis , 2019, GECCO.

[44]  Dirk Sudholt,et al.  Runtime analysis of randomized search heuristics for dynamic graph coloring , 2019, GECCO.

[45]  Benjamin Doerr,et al.  The efficiency threshold for the offspring population size of the (µ, λ) EA , 2019, GECCO.

[46]  Benjamin Doerr,et al.  Analyzing randomized search heuristics via stochastic domination , 2019, Theor. Comput. Sci..

[47]  Yang Yu,et al.  Evolutionary Learning: Advances in Theories and Algorithms , 2019 .

[48]  Per Kristian Lehre,et al.  Runtime analysis of the univariate marginal distribution algorithm under low selective pressure and prior noise , 2019, GECCO.

[49]  Pietro Simone Oliveto,et al.  Evolving boolean functions with conjunctions and disjunctions via genetic programming , 2019, GECCO.

[50]  Benjamin Doerr,et al.  A tight runtime analysis for the cGA on jump functions: EDAs can cross fitness valleys at no extra cost , 2019, GECCO.

[51]  Andreas Krause,et al.  Adaptive Sequence Submodularity , 2019, NeurIPS.

[52]  Frank Neumann,et al.  Evolutionary algorithms for the chance-constrained knapsack problem , 2019, GECCO.

[53]  Frank Neumann,et al.  Pareto Optimization for Subset Selection with Dynamic Cost Constraints , 2018, AAAI.

[54]  Frank Neumann,et al.  Greedy Maximization of Functions with Bounded Curvature under Partition Matroid Constraints , 2018, AAAI.

[55]  Angelika Steger,et al.  When Does Hillclimbing Fail on Monotone Functions: An entropy compression argument , 2018, ANALCO.

[56]  Zhi-Hua Zhou,et al.  Maximizing submodular or monotone approximately submodular functions by multi-objective evolutionary algorithms , 2017, Artif. Intell..

[57]  Frank Neumann,et al.  On the Performance of Baseline Evolutionary Algorithms on the Dynamic Knapsack Problem , 2018, PPSN.

[58]  Chao Qian,et al.  Towards a Running Time Analysis of the (1+1)-EA for OneMax and LeadingOnes Under General Bit-Wise Noise , 2018, PPSN.

[59]  Markus Wagner,et al.  Heavy-Tailed Mutation Operators in Single-Objective Combinatorial Optimization , 2018, PPSN.

[60]  Benjamin Doerr,et al.  The ($$1+\lambda $$1+λ) Evolutionary Algorithm with Self-Adjusting Mutation Rate , 2018, Algorithmica.

[61]  Chao Qian,et al.  Dynamic Mutation Based Pareto Optimization for Subset Selection , 2018, ICIC.

[62]  Dirk Sudholt,et al.  On the Choice of the Update Strength in Estimation-of-Distribution Algorithms and Ant Colony Optimization , 2018, Algorithmica.

[63]  Duc-Cuong Dang,et al.  Level-Based Analysis of the Univariate Marginal Distribution Algorithm , 2018, Algorithmica.

[64]  Adrian Kosowski,et al.  Brief Announcement: Population Protocols Are Fast , 2018, PODC.

[65]  Benjamin Doerr,et al.  Solving Problems with Unknown Solution Length at Almost No Extra Cost , 2018, Algorithmica.

[66]  Markus Wagner,et al.  Escaping large deceptive basins of attraction with heavy-tailed mutation operators , 2018, GECCO.

[67]  Dorian Nogneng,et al.  A new analysis method for evolutionary optimization of dynamic and noisy objective functions , 2018, GECCO.

[68]  Dirk Sudholt,et al.  On the robustness of evolutionary algorithms to noise: refined results and an example where noise helps , 2018, GECCO.

[69]  Benjamin Doerr,et al.  A tight runtime analysis for the (μ + λ) EA , 2018, GECCO.

[70]  Weijie Zheng,et al.  Working principles of binary differential evolution , 2018, GECCO.

[71]  Dirk Sudholt,et al.  Medium step sizes are harmful for the compact genetic algorithm , 2018, GECCO.

[72]  Andrew M. Sutton,et al.  On the runtime dynamics of the compact genetic algorithm on jump functions , 2018, GECCO.

[73]  Pietro Simone Oliveto,et al.  On the runtime analysis of selection hyper-heuristics with adaptive learning periods , 2018, GECCO.

[74]  Carsten Witt,et al.  Theory of estimation-of-distribution algorithms , 2018, GECCO.

[75]  Carsten Witt,et al.  Upper Bounds on the Running Time of the Univariate Marginal Distribution Algorithm on OneMax , 2018, Algorithmica.

[76]  Martin S. Krejca,et al.  Intuitive Analyses via Drift Theory , 2018 .

[77]  Frank Neumann,et al.  Reoptimization Time Analysis of Evolutionary Algorithms on Linear Functions Under Dynamic Uniform Constraints , 2018, Algorithmica.

[78]  Jonathan E. Rowe,et al.  Linear multi-objective drift analysis , 2018, Theor. Comput. Sci..

[79]  Adrian Kosowski,et al.  Population Protocols Are Fast , 2018 .

[80]  Anne Auger,et al.  Drift theory in continuous search spaces: expected hitting time of the (1 + 1)-ES with 1/5 success rule , 2018, GECCO.

[81]  Benjamin Doerr,et al.  Better Runtime Guarantees via Stochastic Domination , 2018, EvoCOP.

[82]  Chao Qian,et al.  Running Time Analysis of the (1+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1+1$$\end{document})-EA for OneMax an , 2017, Algorithmica.

[83]  Jason H. Moore,et al.  Investigating the parameter space of evolutionary algorithms , 2017, BioData Mining.

[84]  Gabriela Ochoa,et al.  Mapping the global structure of TSP fitness landscapes , 2017, J. Heuristics.

[85]  Angelika Steger,et al.  Drift Analysis and Evolutionary Algorithms Revisited , 2016, Combinatorics, Probability and Computing.

[86]  OneMax,et al.  EA on Generalized Dynamic OneMax , 2018 .

[87]  Benjamin Doerr,et al.  Static and Self-Adjusting Mutation Strengths for Multi-valued Decision Variables , 2018, Algorithmica.

[88]  Carsten Witt,et al.  Optimal Mutation Rates for the (1+$$\lambda $$λ) EA on OneMax Through Asymptotically Tight Drift Analysis , 2017, Algorithmica.

[89]  Carsten Witt,et al.  The Impact of a Sparse Migration Topology on the Runtime of Island Models in Dynamic Optimization , 2017, Algorithmica.

[90]  Benjamin Doerr,et al.  Optimal Static and Self-Adjusting Parameter Choices for the (1+(λ,λ))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$( , 2017, Algorithmica.

[91]  Yang Yu,et al.  On Subset Selection with General Cost Constraints , 2017, IJCAI.

[92]  Per Kristian Lehre,et al.  Improved runtime bounds for the univariate marginal distribution algorithm via anti-concentration , 2017, GECCO.

[93]  Andrew M. Sutton,et al.  The Compact Genetic Algorithm is Efficient Under Extreme Gaussian Noise , 2017, IEEE Transactions on Evolutionary Computation.

[94]  Benjamin Doerr,et al.  Runtime analysis of the (1 + (λ, λ)) genetic algorithm on random satisfiable 3-CNF formulas , 2017, GECCO.

[95]  Benjamin Doerr,et al.  The (1+λ) evolutionary algorithm with self-adjusting mutation rate , 2017, GECCO.

[96]  Pratyusha Rakshit,et al.  Noisy evolutionary optimization algorithms - A comprehensive survey , 2017, Swarm Evol. Comput..

[97]  Changhe Li,et al.  A survey of swarm intelligence for dynamic optimization: Algorithms and applications , 2017, Swarm Evol. Comput..

[98]  Benjamin Doerr,et al.  Fast genetic algorithms , 2017, GECCO.

[99]  Andrew M. Sutton,et al.  Resampling vs Recombination: a Statistical Run Time Estimation , 2017, FOGA '17.

[100]  Carsten Witt,et al.  Lower Bounds on the Run Time of the Univariate Marginal Distribution Algorithm on OneMax , 2017, FOGA '17.

[101]  Avinatan Hassidim,et al.  Submodular Optimization under Noise , 2016, COLT.

[102]  Carsten Witt,et al.  The Interplay of Population Size and Mutation Probability in the (1+λ) EA on OneMax , 2017, Algorithmica.

[103]  Frank Neumann,et al.  Time Complexity Analysis of Evolutionary Algorithms on Random Satisfiable k-CNF Formulas , 2016, Algorithmica.

[104]  Carsten Witt,et al.  The Interplay of Population Size and Mutation Probability in the ($$1+\lambda $$1+λ) EA on OneMax , 2016, Algorithmica.

[105]  Benjamin Doerr,et al.  k-Bit Mutation with Self-Adjusting k Outperforms Standard Bit Mutation , 2016, PPSN.

[106]  Carsten Witt,et al.  Optimal Mutation Rates for the (1+λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}) EA on One , 2017, Algorithmica.

[107]  Tobias Friedrich,et al.  EDAs cannot be Balanced and Stable , 2016, GECCO.

[108]  Benjamin Doerr,et al.  Optimal Parameter Choices via Precise Black-Box Analysis , 2016, GECCO.

[109]  Duc-Cuong Dang,et al.  Populations Can Be Essential in Tracking Dynamic Optima , 2016, Algorithmica.

[110]  Duc-Cuong Dang,et al.  Self-adaptation of Mutation Rates in Non-elitist Populations , 2016, PPSN.

[111]  Yevgeniy Vorobeychik,et al.  Submodular Optimization with Routing Constraints , 2016, AAAI.

[112]  Andrew M. Sutton,et al.  Robustness of Ant Colony Optimization to Noise , 2015, Evolutionary Computation.

[113]  Duc-Cuong Dang,et al.  Level-Based Analysis of Genetic Algorithms and Other Search Processes , 2014, bioRxiv.

[114]  Zbigniew Michalewicz,et al.  Evolutionary Computation for Real-World Problems , 2016, Challenges in Computational Statistics and Data Mining.

[115]  Yang Yu,et al.  Subset Selection by Pareto Optimization , 2015, NIPS.

[116]  Dirk Sudholt,et al.  Design and Analysis of Schemes for Adapting Migration Intervals in Parallel Evolutionary Algorithms , 2015, Evolutionary Computation.

[117]  Pietro Simone Oliveto,et al.  Improved time complexity analysis of the Simple Genetic Algorithm , 2015, Theor. Comput. Sci..

[118]  Markus Wagner,et al.  Analyzing the Effects of Instance Features and Algorithm Parameters for Max–Min Ant System and the Traveling Salesperson Problem , 2015, Front. Robot. AI.

[119]  Mojgan Pourhassan,et al.  Maintaining 2-Approximations for the Dynamic Vertex Cover Problem Using Evolutionary Algorithms , 2015, GECCO.

[120]  Duc-Cuong Dang,et al.  Simplified Runtime Analysis of Estimation of Distribution Algorithms , 2015, GECCO.

[121]  Holger R. Maier,et al.  Improved genetic algorithm optimization of water distribution system design by incorporating domain knowledge , 2015, Environ. Model. Softw..

[122]  Frank Neumann,et al.  On the Runtime of Randomized Local Search and Simple Evolutionary Algorithms for Dynamic Makespan Scheduling , 2015, IJCAI.

[123]  Mark Hoogendoorn,et al.  Parameter Control in Evolutionary Algorithms: Trends and Challenges , 2015, IEEE Transactions on Evolutionary Computation.

[124]  Benjamin Doerr,et al.  From black-box complexity to designing new genetic algorithms , 2015, Theor. Comput. Sci..

[125]  Duc-Cuong Dang,et al.  Efficient Optimisation of Noisy Fitness Functions with Population-based Evolutionary Algorithms , 2015, FOGA.

[126]  Carsten Witt,et al.  (1+1) EA on Generalized Dynamic OneMax , 2015, FOGA.

[127]  Marvin Künnemann,et al.  Optimizing linear functions with the (1+λ) evolutionary algorithm - Different asymptotic runtimes for different instances , 2015, Theor. Comput. Sci..

[128]  Carsten Witt,et al.  MMAS Versus Population-Based EA on a Family of Dynamic Fitness Functions , 2014, Algorithmica.

[129]  Timo Kötzing,et al.  Robustness of Populations in Stochastic Environments , 2014, Algorithmica.

[130]  Martin Pelikan,et al.  Estimation of Distribution Algorithms , 2015, Handbook of Computational Intelligence.

[131]  Frank Neumann,et al.  Parameterized Runtime Analyses of Evolutionary Algorithms for the Planar Euclidean Traveling Salesperson Problem , 2014, Evolutionary Computation.

[132]  Per Kristian Lehre,et al.  Unbiased Black-Box Complexity of Parallel Search , 2014, PPSN.

[133]  Frank Neumann,et al.  Maximizing Submodular Functions under Matroid Constraints by Multi-objective Evolutionary Algorithms , 2014, PPSN.

[134]  Thomas Jansen,et al.  Reevaluating Immune-Inspired Hypermutations Using the Fixed Budget Perspective , 2014, IEEE Transactions on Evolutionary Computation.

[135]  Dirk Sudholt,et al.  The choice of the offspring population size in the (1, λ) evolutionary algorithm , 2014, Theor. Comput. Sci..

[136]  Thomas Jansen,et al.  Performance analysis of randomised search heuristics operating with a fixed budget , 2014, Theor. Comput. Sci..

[137]  Andrew M. Sutton,et al.  The component model for elementary landscapes and partial neighborhoods , 2014, Theor. Comput. Sci..

[138]  Andreas Krause,et al.  Submodular Function Maximization , 2014, Tractability.

[139]  Thomas Bartz-Beielstein,et al.  Experimental Analysis of Optimization Algorithms: Tuning and Beyond , 2014, Theory and Principled Methods for the Design of Metaheuristics.

[140]  Carsten Witt,et al.  Runtime analysis of ant colony optimization on dynamic shortest path problems , 2013, GECCO '13.

[141]  Thomas Jansen,et al.  A method to derive fixed budget results from expected optimisation times , 2013, GECCO '13.

[142]  Markus Wagner,et al.  Fast and effective multi-objective optimisation of wind turbine placement , 2013, GECCO '13.

[143]  Andrew M. Sutton,et al.  Fixed-parameter evolutionary algorithms for the Euclidean Traveling Salesperson problem , 2013, 2013 IEEE Congress on Evolutionary Computation.

[144]  Frank Neumann,et al.  Parameterized complexity analysis and more effective construction methods for ACO algorithms and the euclidean traveling salesperson problem , 2013, 2013 IEEE Congress on Evolutionary Computation.

[145]  Zbigniew Michalewicz,et al.  Multi-mine Planning using a Multi-objective Evolutionary Algorithm , 2013, 2013 IEEE Congress on Evolutionary Computation.

[146]  Thomas Jansen,et al.  Mutation Rate Matters Even When Optimizing Monotonic Functions , 2013, Evolutionary Computation.

[147]  Thomas Jansen,et al.  Approximating vertex cover using edge-based representations , 2013, FOGA XII '13.

[148]  Timo Kötzing,et al.  Optimizing expected path lengths with ant colony optimization using fitness proportional update , 2013, FOGA XII '13.

[149]  Carsten Witt,et al.  Tight Bounds on the Optimization Time of a Randomized Search Heuristic on Linear Functions† , 2013, Combinatorics, Probability and Computing.

[150]  Bernd Bischl,et al.  A novel feature-based approach to characterize algorithm performance for the traveling salesperson problem , 2012, Annals of Mathematics and Artificial Intelligence.

[151]  Dirk Sudholt,et al.  A New Method for Lower Bounds on the Running Time of Evolutionary Algorithms , 2011, IEEE Transactions on Evolutionary Computation.

[152]  Frank Neumann,et al.  Bioinspired computation in combinatorial optimization: algorithms and their computational complexity , 2010, GECCO '12.

[153]  Martin Dostál,et al.  Evolutionary Music Composition , 2013, Handbook of Optimization.

[154]  Jakob Puchinger,et al.  Hybrid Metaheuristics for Dynamic and Stochastic Vehicle Routing , 2013, Hybrid Metaheuristics.

[155]  Xin Yao,et al.  Continuous Dynamic Constrained Optimization—The Challenges , 2012, IEEE Transactions on Evolutionary Computation.

[156]  Shengxiang Yang,et al.  Evolutionary dynamic optimization: A survey of the state of the art , 2012, Swarm Evol. Comput..

[157]  Timo Kötzing,et al.  ACO Beats EA on a Dynamic Pseudo-Boolean Function , 2012, PPSN.

[158]  Benjamin Doerr,et al.  Run-time analysis of the (1+1) evolutionary algorithm optimizing linear functions over a finite alphabet , 2012, GECCO '12.

[159]  Thomas Jansen,et al.  Fixed budget computations: a different perspective on run time analysis , 2012, GECCO '12.

[160]  Benjamin Doerr,et al.  Ants easily solve stochastic shortest path problems , 2012, GECCO '12.

[161]  Frank Neumann,et al.  A Parameterized Runtime Analysis of Evolutionary Algorithms for the Euclidean Traveling Salesperson Problem , 2012, AAAI.

[162]  Robert Elsässer,et al.  The impact of the power law exponent on the behavior of a dynamic epidemic type process , 2012, SPAA '12.

[163]  Frank Neumann,et al.  Fixed-Parameter Evolutionary Algorithms and the Vertex Cover Problem , 2012, Algorithmica.

[164]  Benjamin Doerr,et al.  Non-existence of linear universal drift functions , 2010, Theor. Comput. Sci..

[165]  X. Yao,et al.  This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 1 On the Impact of Mutation-Selection Balance on the Runtime of , 2022 .

[166]  Michael Affenzeller,et al.  A Comprehensive Survey on Fitness Landscape Analysis , 2012, Recent Advances in Intelligent Engineering Systems.

[167]  Dirk Sudholt,et al.  A Simple Ant Colony Optimizer for Stochastic Shortest Path Problems , 2012, Algorithmica.

[168]  Frank Neumann,et al.  Theoretical analysis of two ACO approaches for the traveling salesman problem , 2011, Swarm Intelligence.

[169]  Martin Pelikan,et al.  An introduction and survey of estimation of distribution algorithms , 2011, Swarm Evol. Comput..

[170]  Stephen R. Marsland,et al.  Convergence Properties of (μ + λ) Evolutionary Algorithms , 2011, AAAI.

[171]  Benjamin Doerr,et al.  Drift analysis , 2011, GECCO.

[172]  Mahmoud Fouz,et al.  Sharp bounds by probability-generating functions and variable drift , 2011, GECCO '11.

[173]  Bernd Bischl,et al.  Exploratory landscape analysis , 2011, GECCO '11.

[174]  Per Kristian Lehre,et al.  Fitness-levels for non-elitist populations , 2011, GECCO '11.

[175]  Dirk Sudholt,et al.  Runtime analysis of the 1-ANT ant colony optimizer , 2011, Theor. Comput. Sci..

[176]  Abhimanyu Das,et al.  Submodular meets Spectral: Greedy Algorithms for Subset Selection, Sparse Approximation and Dictionary Selection , 2011, ICML.

[177]  Jano I. van Hemert,et al.  Discovering the suitability of optimisation algorithms by learning from evolved instances , 2011, Annals of Mathematics and Artificial Intelligence.

[178]  Benjamin Doerr,et al.  Runtime analysis of the (1+1) evolutionary algorithm on strings over finite alphabets , 2011, FOGA '11.

[179]  Dirk Sudholt,et al.  Adaptive population models for offspring populations and parallel evolutionary algorithms , 2011, FOGA '11.

[180]  Leslie Ann Goldberg,et al.  Adaptive Drift Analysis , 2011, Algorithmica.

[181]  Andreas Krause,et al.  Adaptive Submodularity: Theory and Applications in Active Learning and Stochastic Optimization , 2010, J. Artif. Intell. Res..

[182]  Walter J. Gutjahr,et al.  Ant Colony Optimization: Recent Developments in Theoretical Analysis , 2011, Theory of Randomized Search Heuristics.

[183]  Benjamin Doerr,et al.  Optimal Fixed and Adaptive Mutation Rates for the LeadingOnes Problem , 2010, PPSN.

[184]  Per Kristian Lehre,et al.  Fixed Parameter Evolutionary Algorithms and Maximum Leaf Spanning Trees: A Matter of Mutation , 2010, PPSN.

[185]  Per Kristian Lehre,et al.  Negative Drift in Populations , 2010, PPSN.

[186]  Frank Neumann,et al.  Theoretical Properties of Two ACO Approaches for the Traveling Salesman Problem , 2010, ANTS Conference.

[187]  Kalyanmoy Deb,et al.  Evolutionary algorithms in large-scale open pit mine scheduling , 2010, GECCO '10.

[188]  Dirk Sudholt,et al.  A few ants are enough: ACO with iteration-best update , 2010, GECCO '10.

[189]  Per Kristian Lehre,et al.  Ant colony optimization and the minimum cut problem , 2010, GECCO '10.

[190]  Benjamin Doerr,et al.  Edge-based representation beats vertex-based representation in shortest path problems , 2010, GECCO '10.

[191]  Benjamin Doerr,et al.  Multiplicative Drift Analysis , 2010, GECCO '10.

[192]  Xin Yao,et al.  Analysis of Computational Time of Simple Estimation of Distribution Algorithms , 2010, IEEE Transactions on Evolutionary Computation.

[193]  Pietro Simone Oliveto,et al.  Simplified Drift Analysis for Proving Lower Bounds in Evolutionary Computation , 2008, Algorithmica.

[194]  Carsten Witt,et al.  Approximating Covering Problems by Randomized Search Heuristics Using Multi-Objective Models , 2007, Evolutionary Computation.

[195]  Per Kristian Lehre,et al.  On the Effect of Populations in Evolutionary Multi-Objective Optimisation , 2006, Evolutionary Computation.

[196]  Daniel Johannsen,et al.  Random combinatorial structures and randomized search heuristics , 2010 .

[197]  Yuren Zhou,et al.  Runtime Analysis of an Ant Colony Optimization Algorithm for TSP Instances , 2009, IEEE Transactions on Evolutionary Computation.

[198]  Xin Yao,et al.  A New Approach for Analyzing Average Time Complexity of Population-Based Evolutionary Algorithms on Unimodal Problems , 2009, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[199]  Pietro Simone Oliveto,et al.  Theoretical analysis of fitness-proportional selection: landscapes and efficiency , 2009, GECCO.

[200]  Per Kristian Lehre,et al.  Dynamic evolutionary optimisation: an analysis of frequency and magnitude of change , 2009, GECCO.

[201]  Jonathan E. Rowe,et al.  Theoretical analysis of local search strategies to optimize network communication subject to preserving the total number of links , 2009, Int. J. Intell. Comput. Cybern..

[202]  Frank Neumann,et al.  On the Effects of Adding Objectives to Plateau Functions , 2009, IEEE Transactions on Evolutionary Computation.

[203]  Per Kristian Lehre,et al.  When is an estimation of distribution algorithm better than an evolutionary algorithm? , 2009, 2009 IEEE Congress on Evolutionary Computation.

[204]  Madeleine Theile,et al.  Exact Solutions to the Traveling Salesperson Problem by a Population-Based Evolutionary Algorithm , 2009, EvoCOP.

[205]  Vahab S. Mirrokni,et al.  Non-monotone submodular maximization under matroid and knapsack constraints , 2009, STOC '09.

[206]  Dirk Sudholt,et al.  Analysis of different MMAS ACO algorithms on unimodal functions and plateaus , 2009, Swarm Intelligence.

[207]  Jens Jägersküpper,et al.  A Blend of Markov-Chain and Drift Analysis , 2008, PPSN.

[208]  W. Gutjahr,et al.  Runtime Analysis of Ant Colony Optimization with Best-So-Far Reinforcement , 2008 .

[209]  Walter J. Gutjahr,et al.  First steps to the runtime complexity analysis of ant colony optimization , 2008, Comput. Oper. Res..

[210]  Jittat Fakcharoenphol,et al.  A running time analysis of an Ant Colony Optimization algorithm for shortest paths in directed acyclic graphs , 2008, Inf. Process. Lett..

[211]  Matthew R. Lewis Evolutionary Visual Art and Design , 2008, The Art of Artificial Evolution.

[212]  J. Vondrák Submodularity and curvature : the optimal algorithm , 2008 .

[213]  Tobias Storch,et al.  Finding large cliques in sparse semi-random graphs by simple randomized search heuristics , 2007, Theor. Comput. Sci..

[214]  Benjamin Doerr,et al.  Refined runtime analysis of a basic ant colony optimization algorithm , 2007, 2007 IEEE Congress on Evolutionary Computation.

[215]  Fernando G. Lobo,et al.  Lost gems of EC: The Equilibrium Genetic Algorithm and the Role of Crossover , 2007, SEVO.

[216]  Zbigniew Michalewicz,et al.  Parameter Setting in Evolutionary Algorithms , 2007, Studies in Computational Intelligence.

[217]  Jens Jägersküpper,et al.  When the Plus Strategy Outperforms the Comma Strategyand When Not , 2007, 2007 IEEE Symposium on Foundations of Computational Intelligence.

[218]  Thomas Jansen,et al.  On the brittleness of evolutionary algorithms , 2007, FOGA'07.

[219]  Frank Neumann,et al.  Design and Management of Complex Technical Processes and Systems by Means of Computational Intelligence Methods Runtime Analysis of a Simple Ant Colony Optimization Algorithm Runtime Analysis of a Simple Ant Colony Optimization Algorithm , 2022 .

[220]  Beatrice M. Ombuki-Berman,et al.  Dynamic vehicle routing using genetic algorithms , 2007, Applied Intelligence.

[221]  Frank Neumann,et al.  Ant Colony Optimization and the minimum spanning tree problem , 2010, Theor. Comput. Sci..

[222]  Jonathan L. Shapiro,et al.  Diversity Loss in General Estimation of Distribution Algorithms , 2006, PPSN.

[223]  Stefan Droste,et al.  A rigorous analysis of the compact genetic algorithm for linear functions , 2006, Natural Computing.

[224]  Tobias Storch,et al.  How randomized search heuristics find maximum cliques in planar graphs , 2006, GECCO.

[225]  Carsten Witt,et al.  Runtime Analysis of the ( μ +1) EA on Simple Pseudo-Boolean Functions , 2006 .

[226]  Thomas Jansen,et al.  On the analysis of a dynamic evolutionary algorithm , 2006, J. Discrete Algorithms.

[227]  Carsten Witt,et al.  Runtime Analysis of the ( + 1) EA on Simple Pseudo-Boolean Functions , 2006, Evolutionary Computation.

[228]  Roberto Montemanni,et al.  Ant Colony System for a Dynamic Vehicle Routing Problem , 2005, J. Comb. Optim..

[229]  Kenneth A. De Jong,et al.  Design and Management of Complex Technical Processes and Systems by Means of Computational Intelligence Methods on the Choice of the Offspring Population Size in Evolutionary Algorithms on the Choice of the Offspring Population Size in Evolutionary Algorithms , 2004 .

[230]  Frank Neumann,et al.  Minimum spanning trees made easier via multi-objective optimization , 2005, GECCO '05.

[231]  G. Sebastiani,et al.  An Extended Ant Colony Algorithm and Its Convergence Analysis , 2005 .

[232]  Jonathan L. Shapiro,et al.  Drift and Scaling in Estimation of Distribution Algorithms , 2005, Evolutionary Computation.

[233]  Markus H ohfeld Towards a Theory of Population Based Incremental Learning , 2005 .

[234]  M. Jensen Helper-Objectives: Using Multi-Objective Evolutionary Algorithms for Single-Objective Optimisation , 2004 .

[235]  Ingo Wegener,et al.  The analysis of evolutionary algorithms on sorting and shortest paths problems , 2004, J. Math. Model. Algorithms.

[236]  Gerhard J. Woeginger,et al.  The Traveling Salesman Problem with Few Inner Points , 2004, COCOON.

[237]  Ingo Wegener,et al.  Randomized local search, evolutionary algorithms, and the minimum spanning tree problem , 2004, Theor. Comput. Sci..

[238]  Stefan Droste,et al.  Design and Management of Complex Technical Processes and Systems by means of Computational Intelligence Methods Analysis of the (1+1) EA for a Noisy OneMax , 2004 .

[239]  Adam Prügel-Bennett,et al.  When a genetic algorithm outperforms hill-climbing , 2004, Theor. Comput. Sci..

[240]  I. Wegener,et al.  The Analysis of Evolutionary Algorithms on Sorting and Shortest Paths Problems , 2004 .

[241]  Mikkel T. Jensen,et al.  Helper-objectives: Using multi-objective evolutionary algorithms for single-objective optimisation , 2004, J. Math. Model. Algorithms.

[242]  Walter J. Gutjahr,et al.  A Converging ACO Algorithm for Stochastic Combinatorial Optimization , 2003, SAGA.

[243]  Stefan Droste,et al.  Design and Management of Complex Technical Processes and Systems by Means of Computational Intelligence Methods Analysis of the (1+1) Ea for a Dynamically Bitwise Changing Onemax Analysis of the (1+1) Ea for a Dynamically Bitwise Changing Onemax , 2003 .

[244]  Thomas Stützle,et al.  A short convergence proof for a class of ant colony optimization algorithms , 2002, IEEE Trans. Evol. Comput..

[245]  Gabriela Ochoa,et al.  Setting The Mutation Rate: Scope And Limitations Of The 1/L Heuristic , 2002, GECCO.

[246]  Walter J. Gutjahr,et al.  ACO algorithms with guaranteed convergence to the optimal solution , 2002, Inf. Process. Lett..

[247]  Stefan Droste,et al.  Analysis of the (1+1) EA for a dynamically changing ONEMAX-variant , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[248]  Thomas Jansen,et al.  On the analysis of the (1+1) evolutionary algorithm , 2002, Theor. Comput. Sci..

[249]  Jürgen Branke,et al.  Evolutionary Optimization in Dynamic Environments , 2001, Genetic Algorithms and Evolutionary Computation.

[250]  Jonathan L. Shapiro,et al.  The Sensitivity of PBIL to Its Learning Rate, and How Detailed Balance Can Remove It , 2002, FOGA.

[251]  Pedro Larrañaga,et al.  Estimation of Distribution Algorithms , 2002, Genetic Algorithms and Evolutionary Computation.

[252]  Ingo Wegener,et al.  Theoretical Aspects of Evolutionary Algorithms , 2001, ICALP.

[253]  Xin Yao,et al.  Drift analysis and average time complexity of evolutionary algorithms , 2001, Artif. Intell..

[254]  Thomas Jansen,et al.  Dynamic Parameter Control in Simple Evolutionary Algorithms , 2001, FOGA.

[255]  Thomas Jansen,et al.  Design and Management of Complex Technical Processes and Systems by means of Computational Intelligence Methods On the Choice of the Mutation Probability for the ( 1 + 1 ) EA , 2006 .

[256]  Walter J. Gutjahr,et al.  A Graph-based Ant System and its convergence , 2000, Future Gener. Comput. Syst..

[257]  Marc Schoenauer,et al.  Rigorous Hitting Times for Binary Mutations , 1999, Evolutionary Computation.

[258]  Samir Khuller,et al.  The Budgeted Maximum Coverage Problem , 1999, Inf. Process. Lett..

[259]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[260]  Sanjeev Arora,et al.  Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems , 1998, JACM.

[261]  David E. Goldberg,et al.  The compact genetic algorithm , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[262]  Zbigniew Michalewicz,et al.  Handbook of Evolutionary Computation , 1997 .

[263]  H. Mühlenbein,et al.  From Recombination of Genes to the Estimation of Distributions I. Binary Parameters , 1996, PPSN.

[264]  Thomas Bäck,et al.  Evolutionary Algorithms in Theory and Practice , 1996 .

[265]  Thomas Bäck,et al.  Evolutionary algorithms in theory and practice - evolution strategies, evolutionary programming, genetic algorithms , 1996 .

[266]  Shumeet Baluja,et al.  A Method for Integrating Genetic Search Based Function Optimization and Competitive Learning , 1994 .

[267]  Thomas Bäck,et al.  Optimal Mutation Rates in Genetic Search , 1993, ICGA.

[268]  Alistair Sinclair,et al.  The Equilibrium Genetic Algorithm and the Role of Crossover , 1993 .

[269]  Gilbert Syswerda,et al.  Simulated Crossover in Genetic Algorithms , 1992, FOGA.

[270]  Heinz Mühlenbein,et al.  How Genetic Algorithms Really Work: Mutation and Hillclimbing , 1992, PPSN.

[271]  Thomas Bck,et al.  Self-adaptation in genetic algorithms , 1991 .

[272]  D. Ackley A connectionist machine for genetic hillclimbing , 1987 .

[273]  Gérard Cornuéjols,et al.  Submodular set functions, matroids and the greedy algorithm: Tight worst-case bounds and some generalizations of the Rado-Edmonds theorem , 1984, Discret. Appl. Math..

[274]  B. Hajek Hitting-time and occupation-time bounds implied by drift analysis with applications , 1982, Advances in Applied Probability.

[275]  M. L. Fisher,et al.  An analysis of approximations for maximizing submodular set functions—I , 1978, Math. Program..