Advanced Coding And Modulation For Ultra-wideband And Impulsive Noises

The ever-growing demand for higher quality and faster multimedia content delivery over short distances in home environments drives the quest for higher data rates in wireless personal area networks (WPANs). One of the candidate IEEE 802.15.3a WPAN proposals support data rates up to 480 Mbps by using punctured convolutional codes with quadrature phase shift keying (QPSK) modulation for a multi-band orthogonal frequency-division multiplexing (MB-OFDM) system over ultra wideband (UWB) channels. In the first part of this dissertation, we combine more powerful near-Shannon-limit turbo codes with bandwidth efficient trellis coded modulation, i.e., turbo trellis coded modulation (TTCM), to further improve the data rates up to 1.2 Gbps. A modified iterative decoder for this TTCM coded MB-OFDM system is proposed and its bit error rate performance under various impulsive noises over both Gaussian and UWB channel is extensively investigated, especially in mismatched scenarios. A robust decoder which is immune to noise mismatch is provided based on comparison of impulsive noises in time domain and frequency domain. The accurate estimation of the dynamic noise model could be very difficult or impossible at the receiver, thus a significant performance degradation may occur due to noise mismatch. In the second part of this dissertation, we prove that the minimax decoder in [38], which instead of minimizing the average bit error probability aims at minimizing the worst bit error probability, is optimal and robust to certain noise model with unknown prior probabilities in two and higher dimensions. Besides turbo codes, another kind of error correcting codes which approach the Shannon capacity is low-density parity-check (LDPC) codes. In the last part of this dissertation, iii we extend the density evolution method for sum-product decoding using mismatched noises. We will prove that as long as the true noise type and the estimated noise type used in the decoder are both binary-input memoryless output symmetric channels, the output from mismatched log-likelihood ratio (LLR) computation is also symmetric. We will show the Shannon capacity can be evaluated for mismatched LLR computation and it can be reduced if the mismatched LLR computation is not an one-to-one mapping function. We will derive the Shannon capacity, threshold and stable condition of LDPC codes for mismatched BIAWGN and BIL noise types. The results show that the noise variance estimation errors will not affect the Shannon capacity and stable condition, but the errors do reduce the threshold. The mismatch in noise type will only reduce Shannon capacity when LLR computation is based on BIL.

[1]  J.A.C. Bingham,et al.  Multicarrier modulation for data transmission: an idea whose time has come , 1990, IEEE Communications Magazine.

[2]  Johannes B. Huber,et al.  Power and bandwidth efficient digital communication using turbo codes in multilevel codes , 1995, Eur. Trans. Telecommun..

[3]  Li Ping,et al.  Concatenated tree codes: A low-complexity, high-performance approach , 2001, IEEE Trans. Inf. Theory.

[4]  Timothy Haysom,et al.  Mobile communications system , 1996 .

[5]  Nam C. Phamdo,et al.  Turbo decoders which adapt to noise distribution mismatch , 1998, IEEE Communications Letters.

[6]  A. Glavieux,et al.  Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1 , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.

[7]  J. Kunisch,et al.  Measurement results and modeling aspects for the UWB radio channel , 2002, 2002 IEEE Conference on Ultra Wideband Systems and Technologies (IEEE Cat. No.02EX580).

[8]  H. Vincent Poor,et al.  Iterative (turbo) soft interference cancellation and decoding for coded CDMA , 1999, IEEE Trans. Commun..

[9]  H. Vincent Poor,et al.  On minimax robustness: A general approach and applications , 1984, IEEE Trans. Inf. Theory.

[10]  Qi Wang Near optimal decoding for trellis coded modulation , 2000 .

[11]  Lei Wei,et al.  High-Speed Turbo-TCM-Coded Orthogonal Frequency-Division Multiplexing Ultra-Wideband Systems , 2006, EURASIP J. Wirel. Commun. Netw..

[12]  Sergio Benedetto,et al.  Serial concatenation of block and convolutional codes , 1996 .

[13]  K. J. Ray Liu,et al.  Multiband-OFDM MIMO coding framework for UWB communication systems , 2006, IEEE Transactions on Signal Processing.

[14]  Lei Wei,et al.  Turbo TCM Coded OFDM System for Powerline Channel , 2006 .

[15]  Moe Z. Win,et al.  Ultra-wide bandwidth time-hopping spread-spectrum impulse radio for wireless multiple-access communications , 2000, IEEE Trans. Commun..

[16]  Terence W. Barrett,et al.  History of UltraWideBand (UWB) Radar & Communications: Pioneers and Innovators , 2000 .

[17]  Robert A. Scholtz,et al.  Ultra-Wideband Radio , 2005, EURASIP J. Adv. Signal Process..

[18]  S. Brink Rate one-half code for approaching the Shannon limit by 0.1 dB , 2000 .

[19]  Lei Wei,et al.  High-performance iterative Viterbi algorithm for conventional serial concatenated codes , 2002, IEEE Trans. Inf. Theory.

[20]  Moe Z. Win,et al.  The ultra-wide bandwidth indoor channel: from statistical model to simulations , 2002, IEEE J. Sel. Areas Commun..

[21]  Gottfried Ungerboeck,et al.  Channel coding with multilevel/phase signals , 1982, IEEE Trans. Inf. Theory.

[22]  Philippe J. Tourtier,et al.  Multicarrier modem for digital HDTV terrestrial broadcasting , 1993, Signal Process. Image Commun..

[23]  Robert A. Scholtz,et al.  Multiple access with time-hopping impulse modulation , 1993, Proceedings of MILCOM '93 - IEEE Military Communications Conference.

[24]  G. Forney,et al.  Codes on graphs: normal realizations , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).

[25]  Z. Irahhauten,et al.  An overview of ultra wide band indoor channel measurements and modeling , 2004, IEEE Microwave and Wireless Components Letters.

[26]  Alain Glavieux,et al.  Iterative correction of intersymbol interference: Turbo-equalization , 1995, Eur. Trans. Telecommun..

[27]  Dariush Divsalar,et al.  Coding theorems for 'turbo-like' codes , 1998 .

[28]  Homayoun Hashemi,et al.  Impulse Response Modeling of Indoor Radio Propagation Channels , 1993, IEEE J. Sel. Areas Commun..

[29]  G. Ungerboeck,et al.  Trellis-coded modulation with redundant signal sets Part I: Introduction , 1987, IEEE Communications Magazine.

[30]  Anuj Batra,et al.  Multi-band OFDM Physical Layer Proposal , 2003 .

[31]  Dariush Divsalar,et al.  Iterative turbo decoder analysis based on density evolution , 2001, IEEE J. Sel. Areas Commun..

[32]  J. Keignart,et al.  Subnanosecond UWB channel sounding in frequency and temporal domain , 2002, 2002 IEEE Conference on Ultra Wideband Systems and Technologies (IEEE Cat. No.02EX580).

[33]  Ian R. Petersen,et al.  A minimax robust decoding algorithm , 2000, IEEE Trans. Inf. Theory.

[34]  Scott M. Yano Investigating the ultra-wideband indoor wireless channel , 2002, Vehicular Technology Conference. IEEE 55th Vehicular Technology Conference. VTC Spring 2002 (Cat. No.02CH37367).

[35]  Kyoung-Rok Cho,et al.  Convolutional turbo coded OFDM/TDD mobile communication system for high speed multimedia services , 2005, Advanced Industrial Conference on Telecommunications/Service Assurance with Partial and Intermittent Resources Conference/E-Learning on Telecommunications Workshop (AICT/SAPIR/ELETE'05).

[36]  Anders Vahlin,et al.  Optimal finite duration pulses for OFDM , 1996, IEEE Trans. Commun..

[37]  J.R. Foerster The performance of a direct-sequence spread ultrawideband system in the presence of multipath, narrowband interference, and multiuser interference , 2002, 2002 IEEE Conference on Ultra Wideband Systems and Technologies (IEEE Cat. No.02EX580).

[38]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[39]  Marc Moeneclaey,et al.  Digital HDTV broadcasting over the CATV distribution system , 1993, Signal Process. Image Commun..

[40]  P. Robertson,et al.  A novel bandwidth efficient coding scheme employing turbo codes , 1996, Proceedings of ICC/SUPERCOMM '96 - International Conference on Communications.

[41]  G. Young,et al.  Broadband multimedia delivery over copper , 1995 .

[42]  Sae-Young Chung,et al.  On the construction of some capacity-approaching coding schemes , 2000 .

[43]  Daniel A. Spielman,et al.  Improved low-density parity-check codes using irregular graphs and belief propagation , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[44]  Stephan ten Brink,et al.  Convergence behavior of iteratively decoded parallel concatenated codes , 2001, IEEE Trans. Commun..

[45]  Peter Jung,et al.  Turbo decoding in impulsive noise environments , 2003 .

[46]  N. Boubaker,et al.  Ultra wideband DSSS for multiple access communications using antipodal signaling , 2003, IEEE International Conference on Communications, 2003. ICC '03..

[47]  Dariush Divsalar,et al.  Serial Concatenation of Interleaved Codes: Performance Analysis, Design, and Iterative Decoding , 1997, IEEE Trans. Inf. Theory.

[48]  J. Foerster,et al.  Channel modeling sub-committee report final , 2002 .

[49]  Robert Michael Tanner,et al.  A recursive approach to low complexity codes , 1981, IEEE Trans. Inf. Theory.

[50]  Yiyan Wu,et al.  COFDM: an overview , 1995, IEEE Trans. Broadcast..

[51]  Mark C. Reed,et al.  A Novel Variance Estimator for Turbo-Code Decoding , 2007 .

[52]  D.J.C. MacKay,et al.  Good error-correcting codes based on very sparse matrices , 1997, Proceedings of IEEE International Symposium on Information Theory.

[53]  Niclas Wiberg,et al.  Codes and Decoding on General Graphs , 1996 .

[54]  V. Tarokh,et al.  A statistical path loss model for in-home UWB channels , 2002, 2002 IEEE Conference on Ultra Wideband Systems and Technologies (IEEE Cat. No.02EX580).

[55]  S. Denno,et al.  A decoding for low density parity check codes over impulsive noise channels , 2005, International Symposium on Power Line Communications and Its Applications, 2005..

[56]  Stephen G. Wilson,et al.  SNR mismatch and online estimation in turbo decoding , 1998, IEEE Trans. Commun..

[57]  S. Roy,et al.  Design challenges for very high data rate UWB systems , 2002, Conference Record of the Thirty-Sixth Asilomar Conference on Signals, Systems and Computers, 2002..

[58]  Sae-Young Chung,et al.  Analysis of sum-product decoding of low-density parity-check codes using a Gaussian approximation , 2001, IEEE Trans. Inf. Theory.

[59]  Andrew C. Singer,et al.  Turbo equalization: principles and new results , 2002, IEEE Trans. Commun..

[60]  Branimir R. Vojcic,et al.  Direct-sequence code division multiple access for ultra-wide bandwidth impulse radio , 2003, IEEE Military Communications Conference, 2003. MILCOM 2003..

[61]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[62]  Jean-Bernard Rault,et al.  OFDM for digital TV broadcasting , 1994, Signal Process..

[63]  A. Glavieux,et al.  Turbo-codes and high spectral efficiency modulation , 1994, Proceedings of ICC/SUPERCOMM'94 - 1994 International Conference on Communications.

[64]  S. Weinstein,et al.  Data Transmission by Frequency-Division Multiplexing Using the Discrete Fourier Transform , 1971 .

[65]  John Cocke,et al.  Optimal decoding of linear codes for minimizing symbol error rate (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[66]  G. David Forney,et al.  Modulation and Coding for Linear Gaussian Channels , 1998, IEEE Trans. Inf. Theory.

[67]  G. David Forney,et al.  Concatenated codes , 2009, Scholarpedia.

[68]  Andreas F. Molisch,et al.  A UWB channel model for ultrawideband indoor communication , 2003 .

[69]  Andrew J. Viterbi,et al.  Error bounds for convolutional codes and an asymptotically optimum decoding algorithm , 1967, IEEE Trans. Inf. Theory.

[70]  Patrick Robertson,et al.  Extensions of turbo trellis coded modulation to high bandwidth efficiencies , 1997, Proceedings of ICC'97 - International Conference on Communications.

[71]  F. Chin,et al.  Performance studies of a multi-band OFDM system using a simplified LDPC code , 2004, 2004 International Workshop on Ultra Wideband Systems Joint with Conference on Ultra Wideband Systems and Technologies. Joint UWBST & IWUWBS 2004 (IEEE Cat. No.04EX812).

[72]  Brendan J. Frey,et al.  Factor graphs and the sum-product algorithm , 2001, IEEE Trans. Inf. Theory.

[73]  Rüdiger L. Urbanke,et al.  The capacity of low-density parity-check codes under message-passing decoding , 2001, IEEE Trans. Inf. Theory.

[74]  Xiaodong Wang,et al.  A simple baseband transmission scheme for power line channels , 2006, IEEE Journal on Selected Areas in Communications.

[75]  Sae-Young Chung,et al.  On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit , 2001, IEEE Communications Letters.

[76]  Desmond P. Taylor,et al.  A Statistical Model for Indoor Multipath Propagation , 2007 .

[77]  Debra McKeown,et al.  UWB in Standards , 2005 .

[78]  Moe Z. Win,et al.  Ultra-wide bandwidth signal propagation for indoor wireless communications , 1997, Proceedings of ICC'97 - International Conference on Communications.

[79]  Teong Chee Chuah,et al.  Decoding of low-density parity-check codes in non-Gaussian channels , 2005 .

[80]  L. Wei,et al.  Near-optimum serial concatenation of single-parity codes with convolutional codes , 2005 .

[81]  Antonio Ruiz,et al.  Frequency domain data transmission using reduced computational complexity algorithms , 1980, ICASSP.

[82]  Theodore S. Rappaport,et al.  The evolution of ultra wide band radio for wireless personal area networks , 2003 .

[83]  Patrick Robertson,et al.  Bandwidth-Efficient Turbo Trellis-Coded Modulation Using Punctured Component Codes , 1998, IEEE J. Sel. Areas Commun..

[84]  Sergio Benedetto,et al.  Unveiling turbo codes: some results on parallel concatenated coding schemes , 1996, IEEE Trans. Inf. Theory.

[85]  J.L. Garcia,et al.  New channel impulse response model for UWB indoor system simulations , 2003, The 57th IEEE Semiannual Vehicular Technology Conference, 2003. VTC 2003-Spring..

[86]  G. Ungerboeck,et al.  Trellis-coded modulation with redundant signal sets Part II: State of the art , 1987, IEEE Communications Magazine.

[87]  M. L. Welborn System considerations for ultra-wideband wireless networks , 2001, Proceedings RAWCON 2001. 2001 IEEE Radio and Wireless Conference (Cat.No.01EX514).

[88]  B. Saltzberg,et al.  Performance of an Efficient Parallel Data Transmission System , 1967, IEEE Transactions on Communication Technology.

[89]  Joseph J. Boutros,et al.  Turbo code at 0.03 dB from capacity limit , 2002, Proceedings IEEE International Symposium on Information Theory,.

[90]  Rüdiger L. Urbanke,et al.  Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[91]  Lei Wei,et al.  On bootstrap iterative Viterbi algorithm , 1999, 1999 IEEE International Conference on Communications (Cat. No. 99CH36311).

[92]  Richard D. Wesel,et al.  Turbo-encoder design for symbol-interleaved parallel concatenated trellis-coded modulation , 2001, IEEE Trans. Commun..

[93]  Kenneth Fazel Performance of convolutionally coded CDMA/OFDM in a frequency-time selective fading channel and its near-far resistance , 1994, Proceedings of ICC/SUPERCOMM'94 - 1994 International Conference on Communications.

[94]  Desmond P. Taylor,et al.  Multiple parallel concatenated single parity check codes , 2001, ICC 2001. IEEE International Conference on Communications. Conference Record (Cat. No.01CH37240).

[95]  Sergio Benedetto,et al.  Design of parallel concatenated convolutional codes , 1996, IEEE Trans. Commun..

[96]  Sergio Benedetto,et al.  A soft-input soft-output maximum a posteriori (MAP) module to decode parallel and serial concatenated codes , 1996 .

[97]  J. D. Andersen Turbo codes extended with outer BCH code , 1996 .

[98]  Hesham El Gamal,et al.  Analyzing the turbo decoder using the Gaussian approximation , 2001, IEEE Trans. Inf. Theory.

[99]  W. Turin,et al.  Autoregressive modeling of an indoor UWB channel , 2002, 2002 IEEE Conference on Ultra Wideband Systems and Technologies (IEEE Cat. No.02EX580).

[100]  Moe Z. Win,et al.  Impulse radio: how it works , 1998, IEEE Communications Letters.

[101]  D. Divsalar,et al.  Multiple turbo codes for deep-space communications , 1995 .

[102]  Daisuke Umehara,et al.  Turbo decoding in impulsive noise environment , 2004, IEEE Global Telecommunications Conference, 2004. GLOBECOM '04..

[103]  Joachim Hagenauer,et al.  Iterative decoding of binary block and convolutional codes , 1996, IEEE Trans. Inf. Theory.