From Second to Higher Order Tensors in Diffusion-MRI
暂无分享,去创建一个
[1] Zhizhou Wang,et al. A constrained variational principle for direct estimation and smoothing of the diffusion tensor field from complex DWI , 2004, IEEE Transactions on Medical Imaging.
[2] Nicholas Ayache,et al. Fast and Simple Calculus on Tensors in the Log-Euclidean Framework , 2005, MICCAI.
[3] Denis Le Bihan,et al. Imagerie de diffusion in-vivo par résonance magnétique nucléaire , 1985 .
[4] W. W. Hansen,et al. Nuclear Induction , 2011 .
[5] Peter J. Basser,et al. Spectral decomposition of a 4th-order covariance tensor: Applications to diffusion tensor MRI , 2007, Signal Process..
[6] E. Hahn,et al. Spin Echoes , 2011 .
[7] M. Moseley,et al. Magnetic Resonance in Medicine 51:924–937 (2004) Characterizing Non-Gaussian Diffusion by Using Generalized Diffusion Tensors , 2022 .
[8] Ludovico Minati,et al. Physical foundations, models, and methods of diffusion magnetic resonance imaging of the brain: A review , 2007 .
[9] T. Mareci,et al. Generalized diffusion tensor imaging and analytical relationships between diffusion tensor imaging and high angular resolution diffusion imaging , 2003, Magnetic resonance in medicine.
[10] P. Comon,et al. A polynomial based approach to extract the maxima of an antipodally symmetric spherical function and its application to extract fiber directions from the Orientation Distribution Function in Diffusion MRI , 2008 .
[11] Luke Bloy,et al. On Computing the Underlying Fiber Directions from the Diffusion Orientation Distribution Function , 2008, MICCAI.
[12] Rachid Deriche,et al. Riemannian Framework for Estimating Symmetric Positive Definite 4th Order Diffusion Tensors , 2008, MICCAI.
[13] Rachid Deriche,et al. Statistics on the Manifold of Multivariate Normal Distributions: Theory and Application to Diffusion Tensor MRI Processing , 2006, Journal of Mathematical Imaging and Vision.
[14] N. Ayache,et al. Log‐Euclidean metrics for fast and simple calculus on diffusion tensors , 2006, Magnetic resonance in medicine.
[15] Baba C. Vemuri,et al. Symmetric Positive 4th Order Tensors & Their Estimation from Diffusion Weighted MRI , 2007, IPMI.
[16] P. Basser,et al. MR diffusion tensor spectroscopy and imaging. , 1994, Biophysical journal.
[17] Xavier Pennec,et al. A Riemannian Framework for Tensor Computing , 2005, International Journal of Computer Vision.
[18] H. Pfeifer. Principles of Nuclear Magnetic Resonance Microscopy , 1992 .
[19] D. Tuch. Diffusion MRI of complex tissue structure , 2002 .
[20] Carl-Fredrik Westin,et al. Processing and visualization for diffusion tensor MRI , 2002, Medical Image Anal..
[21] E. Purcell,et al. Resonance Absorption by Nuclear Magnetic Moments in a Solid , 1946 .
[22] J. E. Tanner,et al. Spin diffusion measurements : spin echoes in the presence of a time-dependent field gradient , 1965 .
[23] Daniel Rueckert,et al. Medical Image Computing and Computer-Assisted Intervention − MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part II , 2017, Lecture Notes in Computer Science.
[24] P. Mansfield. Multi-planar image formation using NMR spin echoes , 1977 .
[25] M C Bushell,et al. PRELIMINARY COMMUNICATION: The spatial mapping of translational diffusion coefficients by the NMR imaging technique , 1985 .
[26] V. Wedeen,et al. Mapping fiber orientation spectra in cerebral white matter with Fourier-transform diffusion MRI , 2000 .
[27] Klaus-Dietmarmerboldt. Self-Diffusion NMR Imaging Using Stimulated Echoes , 2004 .
[28] H. C. Torrey. Bloch Equations with Diffusion Terms , 1956 .
[29] P. Thomas Fletcher,et al. Principal Geodesic Analysis on Symmetric Spaces: Statistics of Diffusion Tensors , 2004, ECCV Workshops CVAMIA and MMBIA.
[30] Maher Moakher,et al. A Differential Geometric Approach to the Geometric Mean of Symmetric Positive-Definite Matrices , 2005, SIAM J. Matrix Anal. Appl..
[31] A. Einstein. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.
[32] J. Helpern,et al. Diffusional kurtosis imaging: The quantification of non‐gaussian water diffusion by means of magnetic resonance imaging , 2005, Magnetic resonance in medicine.
[33] E. Purcell,et al. Effects of Diffusion on Free Precession in Nuclear Magnetic Resonance Experiments , 1954 .
[34] D. Hilbert. Über die Darstellung definiter Formen als Summe von Formenquadraten , 1888 .
[35] P. Lauterbur,et al. Image Formation by Induced Local Interactions: Examples Employing Nuclear Magnetic Resonance , 1973, Nature.
[36] P. Basser,et al. Estimation of the effective self-diffusion tensor from the NMR spin echo. , 1994, Journal of magnetic resonance. Series B.
[37] Roland Bammer,et al. Generalized Diffusion Tensor Imaging (GDTI): A Method for Characterizing and Imaging Diffusion Anisotropy Caused by Non‐Gaussian Diffusion , 2010 .
[38] Christophe Lenglet,et al. Geometric and variational methods for diffusion tensor MRI processing. (Méthodes géométriques et variationnelles pour le traitement d'IRM du tenseur de diffusion) , 2006 .
[39] Rachid Deriche,et al. Constrained Flows of Matrix-Valued Functions: Application to Diffusion Tensor Regularization , 2002, ECCV.