Latent feature regression for multivariate count data

We consider the problem of regression on multivariate count data and present a Gibbs sampler for a latent feature regression model suitable for both under- and overdispersed response variables. The model learns countvalued latent features conditional on arbitrary covariates, modeling them as negative binomial variables, and maps them into the dependent count-valued observations using a Dirichlet-multinomial distribution. From another viewpoint, the model can be seen as a generalization of a specic topic model for scenarios where we are interested in generating the actual counts of observations and not just their relative frequencies and cooccurrences. The model is demonstrated on a smart trac

[1]  Charles Elkan,et al.  Accounting for burstiness in topic models , 2009, ICML '09.

[2]  Javier Gutiérrez,et al.  Transit ridership forecasting at station level: an approach based on distance-decay weighted regression , 2011 .

[3]  Lawrence Carin,et al.  Negative Binomial Process Count and Mixture Modeling. , 2012, IEEE transactions on pattern analysis and machine intelligence.

[4]  ModelsThomas W. Yee Reduced-rank Vector Generalized Linear Models , 2000 .

[5]  David B. Dunson,et al.  Lognormal and Gamma Mixed Negative Binomial Regression , 2012, ICML.

[6]  Paul Damien,et al.  A multivariate Poisson-lognormal regression model for prediction of crash counts by severity, using Bayesian methods. , 2008, Accident; analysis and prevention.

[7]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[8]  J. Friedman,et al.  Predicting Multivariate Responses in Multiple Linear Regression , 1997 .

[9]  James G. Scott,et al.  Bayesian Inference for Logistic Models Using Pólya–Gamma Latent Variables , 2012, 1205.0310.

[10]  Andrew McCallum,et al.  Topic Models Conditioned on Arbitrary Features with Dirichlet-multinomial Regression , 2008, UAI.

[11]  Ulrich Paquet Bayesian inference for latent variable models , 2007 .

[12]  C. Wild,et al.  Vector Generalized Additive Models , 1996 .

[13]  Xing Xie,et al.  Discovering regions of different functions in a city using human mobility and POIs , 2012, KDD.

[14]  Arto Klami,et al.  Polya-gamma augmentations for factor models , 2014, ACML.

[15]  Samuel Kaski,et al.  Bayesian Canonical correlation analysis , 2013, J. Mach. Learn. Res..

[16]  M. E. Ghitany,et al.  An EM Algorithm for Multivariate Mixed Poisson Regression Models and its Application , 2012 .

[17]  Lawrence Carin,et al.  Augment-and-Conquer Negative Binomial Processes , 2012, NIPS.

[18]  A. Izenman Reduced-rank regression for the multivariate linear model , 1975 .