A Universal Mass Profile for Dwarf Spheroidal Galaxies

We apply the Jeans equation to estimate masses for eight of the brightest dwarf spheroidal (dSph) galaxies. For Fornax, the dSph with the largest kinematic data set, we obtain a model-independent constraint on the maximum circular velocity, V max = 20+4 –3 km s–1. Although we obtain only lower limits of V max 10 km s–1 for the remaining dSphs, we find that in all cases the enclosed mass at the projected half-light radius is well constrained and robust to a wide range of halo models and velocity anisotropies. We derive a simple analytic formula that estimates M(r half) accurately with respect to results from the full Jeans analysis. Applying this formula to the entire population of Local Group dSphs with published kinematic data, we demonstrate a correlation such that M(r half) ∝ r 1.4±0.4 half, or in terms of the mean density interior to the half-light radius, ρ ∝ r –1.6±0.4 half. This relation is driven by the fact that the dSph data exhibit a correlation between global velocity dispersion and half-light radius. We argue that tidal forces are unlikely to have introduced this relation, but tides may have increased the scatter and/or altered the slope. While the data are well described by mass profiles ranging over a factor of 2 in normalization (V max ~ 10-20 km s–1), we consider the hypothesis that all dSphs are embedded within a "universal" dark matter halo. We show that in addition to the power law M ∝ r 1.4, viable candidates include a cuspy "Navarro-Frenk-White" halo with V max ~ 15 km s–1 and scale radius r 0 ~ 800 pc, as well as a cored halo with V max ~ 13 km s–1 and r 0 ~ 150 pc. Finally, assuming that their measured velocity dispersions accurately reflect their masses, the smallest dSphs now allow us to resolve dSph densities at radii as small as a few tens of pc. At these small scales, we find mean densities as large as ρ 5 M ☉ pc–3 (200 GeV cm–3).

[1]  E. Łokas The mass and velocity anisotropy of the Carina, Fornax, Sculptor and Sextans dwarf spheroidal galaxies , 2009 .

[2]  N. W. Evans,et al.  A SPECTROSCOPIC CONFIRMATION OF THE BOOTES II DWARF SPHEROIDAL , 2008, 0809.0700.

[3]  Roberto Ragazzoni,et al.  The Elongated Structure of the Hercules Dwarf Spheroidal Galaxy from Deep Large Binocular Telescope Imaging , 2007 .

[4]  K. Stanek,et al.  Discovery of a Tidal Extension of the Sagittarius Dwarf Spheroidal Galaxy , 1996 .

[5]  L. Hebb,et al.  Discovery of an Unusual Dwarf Galaxy in the Outskirts of the Milky Way , 2007, astro-ph/0701154.

[6]  B. Yanny,et al.  A New Milky Way Dwarf Satellite in Canes Venatici , 2006 .

[7]  B. Willman,et al.  THE LEAST-LUMINOUS GALAXY: SPECTROSCOPY OF THE MILKY WAY SATELLITE SEGUE 1 , 2008, 0809.2781.

[8]  Mario Mateo,et al.  CLEAN KINEMATIC SAMPLES IN DWARF SPHEROIDALS: AN ALGORITHM FOR EVALUATING MEMBERSHIP AND ESTIMATING DISTRIBUTION PARAMETERS WHEN CONTAMINATION IS PRESENT , 2008, 0811.1990.

[9]  M. Irwin,et al.  Life at the periphery of the Local Group: the kinematics of the Tucana dwarf galaxy , 2009, 0903.4635.

[10]  Alan W. McConnachie,et al.  THE SIGNATURE OF GALACTIC TIDES IN LOCAL GROUP DWARF SPHEROIDALS , 2008, 0811.1579.

[11]  Dark matter in elliptical galaxies — II. Estimating the mass within the virial radius , 2004, astro-ph/0405491.

[12]  B. Willman,et al.  THE STAR FORMATION HISTORY AND EXTENDED STRUCTURE OF THE HERCULES MILKY WAY SATELLITE , 2009, 0906.4017.

[13]  G. Illingworth,et al.  The masses of globular clusters. II - Velocity dispersions and mass-to-light ratios , 1976 .

[14]  R. Ibata,et al.  Discrete Classification with Principal Component Analysis: Discrimination of Giant and Dwarf Spectra in K-stars , 1997, astro-ph/9704014.

[15]  P. Frinchaboy,et al.  Exploring Halo Substructure with Giant Stars: The Velocity Dispersion Profiles of the Ursa Minor and Draco Dwarf Spheroidal Galaxies at Large Angular Separations , 2005, astro-ph/0504035.

[16]  Zurich,et al.  The discovery of Segue 2: a prototype of the population of satellites of satellites , 2009, 0903.0818.

[17]  A. Helmi,et al.  On the common mass scale of the Milky Way satellites , 2008, 0810.1297.

[18]  J. D. Annan,et al.  The influence of binary stars on dwarf spheroidal galaxy kinematics , 1995, astro-ph/9510152.

[19]  Slawomir Piatek,et al.  The effect of galactic tides on the apparent mass-to-light ratios in dwarf spheroidal galaxies , 1995 .

[20]  N. W. Evans,et al.  Kinematically Cold Populations at Large Radii in the Draco and Ursa Minor Dwarf Spheroidal Galaxies , 2004, astro-ph/0406520.

[21]  M. Irwin,et al.  LEO V: SPECTROSCOPY OF A DISTANT AND DISTURBED SATELLITE , 2009, 0902.3003.

[22]  S. Tremaine,et al.  Estimating the masses of galaxy groups: alternatives to the virial theorem , 1985 .

[23]  Mario Mateo,et al.  INTERNAL KINEMATICS OF THE ANDROMEDA II DWARF SPHEROIDAL GALAXY , 1999 .

[24]  Sangmo Tony Sohn,et al.  Exploring Halo Substructure with Giant Stars. X. Extended Dark Matter or Tidal Disruption?: The Case for the Leo I Dwarf Spheroidal Galaxy , 2007 .

[25]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[26]  N. W. Evans,et al.  A photometrically and kinematically distinct core in the Sextans dwarf spheroidal galaxy , 2004 .

[27]  M. Steinmetz,et al.  The Power Spectrum Dependence of Dark Matter Halo Concentrations , 2000, astro-ph/0012337.

[28]  Jan T. Kleyna,et al.  The tidal stripping of satellites , 2005, astro-ph/0506687.

[29]  Gary A. Mamon,et al.  Mass modelling of dwarf spheroidal galaxies: the effect of unbound stars from tidal tails and the Milky Way , 2007 .

[30]  Alan W. McConnachie,et al.  The Tidal Evolution of Local Group Dwarf Spheroidals , 2007, 0708.3087.

[31]  Ivan R. King,et al.  The structure of star clusters. I. an empirical density law , 1962 .

[32]  N. W. Evans,et al.  Dark matter in dwarf spheroidals - I. Models , 2002 .

[33]  N. F. Martin,et al.  A Keck/DEIMOS spectroscopic survey of faint Galactic satellites: searching for the least massive dwarf galaxies , 2007, 0705.4622.

[34]  N. W. Evans,et al.  Dark matter in dwarf spheroidals – II. Observations and modelling of Draco , 2001, astro-ph/0109450.

[35]  S. White,et al.  The Structure of cold dark matter halos , 1995, astro-ph/9508025.

[36]  Mario Mateo,et al.  Internal Kinematics of the Fornax Dwarf Spheroidal Galaxy , 2005 .

[37]  G. Lake,et al.  Tidal Stirring and the Origin of Dwarf Spheroidals in the Local Group , 2000, astro-ph/0011041.

[38]  M. Aaronson,et al.  Accurate radial velocities for carbon stars in Draco and Ursa Minor - The first hint of a dwarf spheroidal mass-to-light ratio , 1983 .

[39]  L. Mayer,et al.  The anatomy of Leo I: how tidal tails affect the kinematics , 2008, 0804.0204.

[40]  Philippe Fischer,et al.  The Carina dwarf spheroidal galaxy: how dark is it? , 1993 .

[41]  Beth Willman,et al.  A common mass scale for satellite galaxies of the Milky Way , 2008, Nature.

[42]  Oleg Y. Gnedin,et al.  A Large Dark Matter Core in the Fornax Dwarf Spheroidal Galaxy? , 2006, astro-ph/0603775.

[43]  A. M. N. Ferguson,et al.  A Keck/DEIMOS spectroscopic survey of the faint M 31 satellites And XV and And XVI , 2009, 0901.0820.

[44]  Alan McConnachie,et al.  The Cold Dark Matter Halos of Local Group Dwarf Spheroidals , 2007 .

[45]  M. Mateo,et al.  Proper Motions of Dwarf Spheroidal Galaxies from Hubble Space Telescope Imaging. IV: Measurement for Sculptor , 2006, astro-ph/0612705.

[46]  Mike Irwin,et al.  Structural parameters for the Galactic dwarf spheroidals , 1995 .

[47]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[48]  Tucson,et al.  Leo V: A Companion of a Companion of the Milky Way Galaxy? , 2008, 0807.2831.

[49]  H. Plummer On the Problem of Distribution in Globular Star Clusters: (Plate 8.) , 1911 .

[50]  Mario Mateo,et al.  The Velocity Dispersion Profile of the Remote Dwarf Spheroidal Galaxy Leo I: A Tidal Hit and Run? , 2007, 0708.1327.

[51]  A. Lewis,et al.  Cosmological parameters from CMB and other data: A Monte Carlo approach , 2002, astro-ph/0205436.

[52]  Mario Mateo,et al.  STELLAR VELOCITIES IN THE CARINA, FORNAX, SCULPTOR, AND SEXTANS dSph GALAXIES: DATA FROM THE MAGELLAN/MMFS SURVEY , 2008, 0811.0118.

[53]  James Binney,et al.  Galactic Dynamics: Second Edition , 2008 .

[54]  N. Evans,et al.  Cores and cusps in the dwarf spheroidals , 2008, 0811.1488.

[55]  Mario Mateo,et al.  Velocity Dispersion Profiles of Seven Dwarf Spheroidal Galaxies , 2007, 0708.0010.

[56]  Joshua D. Simon,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE KINEMATICS OF THE ULTRA-FAINT MILKY WAY SATELLITES: SOLVING THE MISSING SATELLITE PROBLEM , 2022 .

[57]  Rodrigo Ibata,et al.  Sagittarius: the nearest dwarf galaxy , 1995 .

[58]  B. Yanny,et al.  Cats and dogs, hair and a hero: A quintet of new milky way companions , 2006 .

[59]  S. Tremaine,et al.  Measuring mass-to-light ratios of spherical stellar systems by core fitting. , 1986 .

[60]  R. Hartog,et al.  ON THE DYNAMICS OF THE CORES OF GALAXY CLUSTERS , 1996 .

[61]  R. Ibata,et al.  The Haunted Halos of Andromeda and Triangulum: A Panorama of Galaxy Formation in Action , 2007, 0704.1318.

[62]  Fabio Governato,et al.  The Metamorphosis of Tidally Stirred Dwarf Galaxies , 2001, astro-ph/0103430.

[63]  A. D. Mackey,et al.  Stellar kinematics and metallicities in the Leo I dwarf spheroidal galaxy -- wide field implications for galactic evolution , 2007 .

[64]  David W. Latham,et al.  A Search for Spectroscopic Binaries in the Globular Cluster M3 , 1988 .

[65]  M. Mateo,et al.  Systemic Proper Motions of Milky Way Satellites from Stellar Redshifts: The Carina, Fornax, Sculptor, and Sextans Dwarf Spheroidals , 2008, 0810.1511.

[66]  L. Hernquist,et al.  An Analytical Model for Spherical Galaxies and Bulges , 1990 .

[67]  Andrew A. West,et al.  A New Milky Way Companion: Unusual Globular Cluster or Extreme Dwarf Satellite? , 2004, astro-ph/0410416.

[68]  R. Somerville,et al.  Profiles of dark haloes: evolution, scatter and environment , 1999, astro-ph/9908159.

[69]  HongSheng Zhao Analytical models for galactic nuclei , 1996 .

[70]  Sverre J. Aarseth,et al.  On the Tidal Disruption of Dwarf Spheroidal Galaxies around the Galaxy , 1995 .

[71]  Jr.,et al.  A New Milky Way Dwarf Galaxy in Ursa Major , 2005, astro-ph/0503552.

[72]  E. Olszewski,et al.  The Mass-to-Light Ratios of the Draco and Ursa Minor Dwarf Spheroidal Galaxies. II. The Binary Population and its Effects on the Measured Velocity Dispersions of Dwarf Spheroidals , 1996 .

[73]  M. F. Skrutskie,et al.  A Two Micron All Sky Survey View of the Sagittarius Dwarf Galaxy. I. Morphology of the Sagittarius Core and Tidal Arms , 2003, astro-ph/0304198.

[74]  THE MICHIGAN/MIKE FIBER SYSTEM SURVEY OF STELLAR RADIAL VELOCITIES IN DWARF SPHEROIDAL GALAXIES: ACQUISITION AND REDUCTION OF DATA ∗ , 2007, astro-ph/0703284.

[75]  Mario Mateo,et al.  DWARF GALAXIES OF THE LOCAL GROUP , 1998, astro-ph/9810070.

[76]  Sangmo Tony Sohn,et al.  Exploring Halo Substructure with Giant Stars. XI. The Tidal Tails of the Carina Dwarf Spheroidal Galaxy and the Discovery of Magellanic Cloud Stars in the Carina Foreground , 2006, astro-ph/0605098.

[77]  S. Majewski,et al.  Modeling the Structure and Dynamics of Dwarf Spheroidal Galaxies with Dark Matter and Tides , 2007, 0712.4312.

[78]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[79]  Heidelberg,et al.  A Comprehensive Maximum Likelihood Analysis of the Structural Properties of Faint Milky Way Satellites , 2008, 0805.2945.

[80]  Subaru Telescope,et al.  A Curious Milky Way Satellite in Ursa Major , 2006, astro-ph/0606633.

[81]  Gary A. Mamon,et al.  Tidal evolution of discy dwarf galaxies in the Milky Way potential: the formation of dwarf spheroidals , 2008, 0803.2464.