Measuring centrality and dispersion in directional datasets: the ellipsoidal cone covering approach

Consider a finite collection $$\{\xi _k\}_{k=1}^p$${ξk}k=1p of vectors in the space $$\mathbb {R}^n$$Rn. The $$\xi _k$$ξk’s are not to be seen as position points but as directions. This work addresses the problem of computing the ellipsoidal cone of minimal volume that contains all the $$\xi _k$$ξk’s. The volume of an ellipsoidal cone is defined as the usual n-dimensional volume of a certain truncation of the cone. The central axis of the ellipsoidal cone of minimal volume serves to define the central direction of the datapoints, whereas its volume can be used as measure of dispersion of the datapoints.

[1]  A. Seeger,et al.  Solidity indices for convex cones , 2012 .

[2]  Michael J. Todd,et al.  On Khachiyan's algorithm for the computation of minimum-volume enclosing ellipsoids , 2007, Discret. Appl. Math..

[3]  J. Danskin The Theory of Max-Min, with Applications , 1966 .

[4]  Annabella Astorino,et al.  An illumination problem: optimal apex and optimal orientation for a cone of light , 2014, J. Glob. Optim..

[5]  Brian D. Ripley,et al.  Statistics on Spheres , 1983 .

[6]  René Henrion,et al.  Inradius and Circumradius of Various Convex Cones Arising in Applications , 2010 .

[7]  Alberto Seeger,et al.  Conic version of Loewner–John ellipsoid theorem , 2016, Math. Program..

[8]  Tyrrell B. McAllister,et al.  TWO CHARACTERIZATIONS OF ELLIPSOIDAL CONES , 2012, 1204.3947.

[9]  Alberto Seeger,et al.  Centers and partial volumes of convex cones I. Basic theory , 2015 .

[10]  Peter M. Gruber,et al.  John and Loewner Ellipsoids , 2011, Discret. Comput. Geom..

[11]  René Henrion,et al.  On Properties of Different Notions of Centers for Convex Cones , 2010 .

[12]  K. Ball An Elementary Introduction to Modern Convex Geometry , 1997 .

[13]  Peng Sun,et al.  Linear convergence of a modified Frank–Wolfe algorithm for computing minimum-volume enclosing ellipsoids , 2008, Optim. Methods Softw..

[14]  R. Rockafellar Convex Analysis: (pms-28) , 1970 .

[15]  Hans Schneider,et al.  Positive operators on the n-dimensional ice cream cone , 1975 .

[16]  H. Wolkowicz,et al.  Invariant ellipsoidal cones , 1991 .

[17]  R. Tyrrell Rockafellar,et al.  Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.

[18]  A. Berman Cones, matrices and mathematical programming , 1973 .

[19]  Jean-Louis Goffin,et al.  The Relaxation Method for Solving Systems of Linear Inequalities , 1980, Math. Oper. Res..

[20]  Peng Sun,et al.  Computation of Minimum Volume Covering Ellipsoids , 2002, Oper. Res..

[21]  Bastian Goldlücke,et al.  Variational Analysis , 2014, Computer Vision, A Reference Guide.

[22]  Annabella Astorino,et al.  Central axes and peripheral points in high dimensional directional datasets , 2016, Comput. Optim. Appl..