Coherence estimation from multilook incoherent SAR imagery

This paper presents an unsupervised method capable to provide estimates of temporal coherence starting from a pair of multilook detected synthetic aperture radar (SAR) images of the same scene. The method relies on robust measurements of the temporal correlation of speckle patterns between the two pass dates. To this end, a nonlinear transformation aimed at decorrelating the data across time while retaining the multiplicative noise model is defined as the pixel geometric mean and ratio of the two overlapped images. The temporal correlation coefficient (TCC) of speckle is analytically derived from the noise variances, measured in the transformed pair of images as regression coefficients of local standard deviation to local mean, calculated on homogeneous, i.e., nontextured, pixels. Such pixels are identified based on the observation that homogeneous areas produce clustered scatter-points that are aligned along the regression line. Experiments were carried out on two pairs of multitemporal SAR observations, from the European Remote Sensing 1/2 (ERS-1/2) tandem mission and from the 1994 SIR-C mission. A good fit with the true coherence values was found, irrespective of the presence of textures; when the true coherence was unavailable, the estimated coherence results match the available ground truth data.

[1]  D. R. Fatland,et al.  Change detection on Alaska's North Slope using repeat-pass ERS-1 SAR images , 1993, IEEE Trans. Geosci. Remote. Sens..

[2]  E. Nezry,et al.  Structure detection and statistical adaptive speckle filtering in SAR images , 1993 .

[3]  J. Bruniquel,et al.  Multi-variate optimal speckle reduction in SAR imagery , 1997 .

[4]  Luciano Alparone,et al.  Multiresolution local-statistics speckle filtering based on a ratio Laplacian pyramid , 1998, IEEE Trans. Geosci. Remote. Sens..

[5]  Howard A. Zebker,et al.  Decorrelation in interferometric radar echoes , 1992, IEEE Trans. Geosci. Remote. Sens..

[6]  Ishuwa C. Sikaneta,et al.  Estimating the effective number of looks in interferometric SAR data , 2002, IEEE Trans. Geosci. Remote. Sens..

[7]  C. H. Gierull Unbiased coherence estimator for SAR interferometry with application to moving target detection , 2001 .

[8]  Jakob J. van Zyl,et al.  Change detection techniques for ERS-1 SAR data , 1993, IEEE Trans. Geosci. Remote. Sens..

[9]  R. Unbehauen,et al.  Estimation of image noise variance , 1999 .

[10]  Jong-Sen Lee,et al.  Refined filtering of image noise using local statistics , 1981 .

[11]  Paris W. Vachon,et al.  Coherence estimation for SAR imagery , 1999, IEEE Trans. Geosci. Remote. Sens..

[12]  Lorenzo Bruzzone,et al.  Automatic analysis of the difference image for unsupervised change detection , 2000, IEEE Trans. Geosci. Remote. Sens..

[13]  Luciano Alparone,et al.  Joint change analysis and speckle filtering of multitemporal ERS-1 imagery , 1999, IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293).

[14]  Ridha Touzi,et al.  Statistics of the Stokes parameters and of the complex coherence parameters in one-look and multilook speckle fields , 1996, IEEE Trans. Geosci. Remote. Sens..

[15]  John Immerkær,et al.  Fast Noise Variance Estimation , 1996, Comput. Vis. Image Underst..

[16]  Rae-Hong Park,et al.  Multiresolution Adaptive Image Smoothing , 1994, CVGIP Graph. Model. Image Process..

[17]  F. Ulaby,et al.  Textural Infornation in SAR Images , 1986, IEEE Transactions on Geoscience and Remote Sensing.

[18]  S. Quegan,et al.  Understanding Synthetic Aperture Radar Images , 1998 .

[19]  Jong-Sen Lee,et al.  Unsupervised estimation of speckle noise in radar images , 1992, Int. J. Imaging Syst. Technol..

[20]  Urs Wegmüller,et al.  Landuse mapping with ERS SAR interferometry , 2000, IEEE Trans. Geosci. Remote. Sens..

[21]  Jong-Sen Lee,et al.  Intensity and phase statistics of multilook polarimetric and interferometric SAR imagery , 1994, IEEE Trans. Geosci. Remote. Sens..

[22]  J.S. Lee,et al.  Noise Modeling and Estimation of Remotely-Sensed Images , 1989, 12th Canadian Symposium on Remote Sensing Geoscience and Remote Sensing Symposium,.

[23]  Fabrizio Argenti,et al.  Speckle removal from SAR images in the undecimated wavelet domain , 2002, IEEE Trans. Geosci. Remote. Sens..

[24]  Jean-Marc Boucher,et al.  Multiscale MAP filtering of SAR images , 2001, IEEE Trans. Image Process..

[25]  John C. Curlander,et al.  Synthetic Aperture Radar: Systems and Signal Processing , 1991 .

[26]  Mihai Datcu,et al.  Query by image content and information mining , 1999, IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293).

[27]  R. Dekker Speckle filtering in satellite SAR change detection imagery , 1998 .

[28]  Luciano Alparone,et al.  Reliably estimating the speckle noise from SAR data , 1999, IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293).

[29]  Fuk K. Li,et al.  Synthetic aperture radar interferometry , 2000, Proceedings of the IEEE.

[30]  Luciano Alparone,et al.  Evaluating time correlation of speckle in ERS-1 SAR images , 1998, IGARSS '98. Sensing and Managing the Environment. 1998 IEEE International Geoscience and Remote Sensing. Symposium Proceedings. (Cat. No.98CH36174).

[31]  Søren I. Olsen,et al.  Estimation of Noise in Images: An Evaluation , 1993, CVGIP Graph. Model. Image Process..

[32]  Claudio Prati,et al.  SAR interferometry: a "Quick and dirty" coherence estimator for data browsing , 1997, IEEE Trans. Geosci. Remote. Sens..