Stratified Generalized Procrustes Analysis

Generalized procrustes analysis computes the best set of transformations that relate matched shape data. In shape analysis the transformations are usually chosen as similarities, while in general statistical data analysis other types of transformation groups such as the affine group may be used. Generalized procrustes analysis has a nonlinear and nonconvex formulation. The classical approach alternates the computation of a so-called reference shape and the computation of transformations relating this reference shape to each shape datum in turn.We propose the stratified approach to generalized procrustes analysis. It first uses the affine transformation group to analyze the data and then upgrades the solution to the sought after group, whether Euclidean or similarity. We derive a convex formulation for each of these two steps, and efficient practical algorithms that gracefully handle missing data (incomplete shapes).Extensive experimental results show that our approaches perform well on simulated and real data. In particular our closed-form solution gives very accurate results for generalized procrustes analysis of Euclidean data.

[1]  J. Gower Generalized procrustes analysis , 1975 .

[2]  Soren W. Henriksen,et al.  Manual of photogrammetry , 1980 .

[3]  K. S. Arun,et al.  Least-Squares Fitting of Two 3-D Point Sets , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Martial Hebert,et al.  Provably-convergent iterative methods for projective structure from motion , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[5]  Henning Biermann,et al.  Recovering non-rigid 3D shape from image streams , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[6]  Jing Xiao,et al.  Simultaneous Registration and Modeling of Deformable Shapes , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[7]  Peter Meer,et al.  Optimal rigid motion estimation and performance evaluation with bootstrap , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[8]  Søren Hein,et al.  On the Estimation of Rigid Body Rotation from Noisy Data , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  P. Schönemann,et al.  Fitting one matrix to another under choice of a central dilation and a rigid motion , 1970 .

[10]  P. Boggs,et al.  ODRPACK Software for Weighted Orthogonal Distance Regression. , 1987 .

[11]  Daniel Pizarro-Perez,et al.  Stratified Generalized Procrustes Analysis , 2010, BMVC.

[12]  G. W. Stewart,et al.  On the Early History of the Singular Value Decomposition , 1993, SIAM Rev..

[13]  Robert B. Fisher,et al.  Estimating 3-D rigid body transformations: a comparison of four major algorithms , 1997, Machine Vision and Applications.

[14]  Richard A. Volz,et al.  Estimating 3-D location parameters using dual number quaternions , 1991, CVGIP Image Underst..

[15]  Reinhard Koch,et al.  Visual Modeling with a Hand-Held Camera , 2004, International Journal of Computer Vision.

[16]  João M. F. Xavier,et al.  Globally optimal solution to exploit rigidity when recovering structure from motion under occlusion , 2008, 2008 15th IEEE International Conference on Image Processing.

[17]  Long Quan,et al.  Self-calibration of an affine camera from multiple views , 1996, International Journal of Computer Vision.

[18]  David W. Jacobs,et al.  Linear Fitting with Missing Data for Structure-from-Motion , 2001, Comput. Vis. Image Underst..

[19]  J. Berge,et al.  Orthogonal procrustes rotation for two or more matrices , 1977 .

[20]  Berthold K. P. Horn,et al.  Closed-form solution of absolute orientation using unit quaternions , 1987 .

[21]  Andrew W. Fitzgibbon,et al.  Bundle Adjustment - A Modern Synthesis , 1999, Workshop on Vision Algorithms.

[22]  J.A. Ramos,et al.  Total least squares fitting of two point sets in m-D , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[23]  Naoya Ohta,et al.  Optimal Estimation of Three-Dimensional Rotation and Reliability Evaluation , 1998, ECCV.

[24]  Kenichi Kanatani,et al.  Analysis of 3-D Rotation Fitting , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Michael J. Black,et al.  HumanEva: Synchronized Video and Motion Capture Dataset for Evaluation of Articulated Human Motion , 2006 .

[26]  Gaojin Wen,et al.  Total least squares fitting of point sets in m-D , 2005, International 2005 Computer Graphics.

[27]  Richard Szeliski,et al.  Vision Algorithms: Theory and Practice , 2002, Lecture Notes in Computer Science.

[28]  Adrien Bartoli,et al.  Is dual linear self-calibration artificially ambiguous? , 2009, IEEE International Conference on Computer Vision.

[29]  Jing Xiao,et al.  A Closed-Form Solution to Non-Rigid Shape and Motion Recovery , 2004, International Journal of Computer Vision.

[30]  Stefano Soatto,et al.  Deformotion: Deforming Motion, Shape Average and the Joint Registration and Approximation of Structures in Images , 2003, International Journal of Computer Vision.

[31]  John B. Moore,et al.  Global registration of multiple 3D point sets via optimization-on-a-manifold , 2005, SGP '05.

[32]  S. Umeyama,et al.  Least-Squares Estimation of Transformation Parameters Between Two Point Patterns , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  Richard H. Byrd,et al.  Algorithm 676: ODRPACK: software for weighted orthogonal distance regression , 1989, TOMS.

[34]  Snigdhansu Chatterjee,et al.  Procrustes Problems , 2005, Technometrics.

[35]  P. Schönemann,et al.  A generalized solution of the orthogonal procrustes problem , 1966 .

[36]  Adrien Bartoli,et al.  Coarse-to-fine low-rank structure-from-motion , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[37]  K. Mardia,et al.  Statistical Shape Analysis , 1998 .

[38]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[39]  Berthold K. P. Horn,et al.  Closed-form solution of absolute orientation using orthonormal matrices , 1988 .