Landauer’s Principle in a Quantum Szilard Engine without Maxwell’s Demon

Quantum Szilard engine constitutes an adequate interplay of thermodynamics, information theory and quantum mechanics. Szilard engines are in general operated by a Maxwell’s Demon where Landauer’s principle resolves the apparent paradoxes. Here we propose a Szilard engine setup without featuring an explicit Maxwell’s demon. In a demonless Szilard engine, the acquisition of which-side information is not required, but the erasure and related heat dissipation still take place implicitly. We explore a quantum Szilard engine considering quantum size effects. We see that insertion of the partition does not localize the particle to one side, instead creating a superposition state of the particle being in both sides. To be able to extract work from the system, particle has to be localized at one side. The localization occurs as a result of quantum measurement on the particle, which shows the importance of the measurement process regardless of whether one uses the acquired information or not. In accordance with Landauer’s principle, localization by quantum measurement corresponds to a logically irreversible operation and for this reason it must be accompanied by the corresponding heat dissipation. This shows the validity of Landauer’s principle even in quantum Szilard engines without Maxwell’s demon.

[1]  Juan M. R. Parrondo,et al.  The Szilard engine revisited: Entropy, macroscopic randomness, and symmetry breaking phase transitions. , 2001, Chaos.

[2]  Seth Lloyd,et al.  Quantum-mechanical Maxwell’s demon , 1997 .

[3]  David Jennings,et al.  The extraction of work from quantum coherence , 2015, 1506.07875.

[4]  John D. Norton,et al.  Exorcist XIV: The wrath of maxwell’s demon. Part II. from szilard to Landauer and beyond , 1999 .

[5]  Masahito Ueda,et al.  Thermodynamic Work Gain from Entanglement , 2012, 1207.6872.

[6]  Kurt Jacobs,et al.  Second law of thermodynamics and quantum feedback control: Maxwell’s demon with weak measurements , 2009, 0906.4146.

[7]  Robert Alicki,et al.  Information-thermodynamics link revisited , 2019, Journal of Physics A: Mathematical and Theoretical.

[8]  M. Feng,et al.  Single-Atom Demonstration of the Quantum Landauer Principle. , 2018, Physical review letters.

[9]  Altug Sisman,et al.  The improvement effect of quantum degeneracy on the work from a Carnot cycle , 2001 .

[10]  Lian-Ao Wu,et al.  Revisiting the quantum Szilard engine with fully quantum considerations , 2012, 1208.3985.

[11]  R. Landauer,et al.  Irreversibility and heat generation in the computing process , 1961, IBM J. Res. Dev..

[12]  A. Rex,et al.  Maxwell's demon 2: entropy, classical and quantum information, computing , 2002 .

[13]  Janet Anders,et al.  A quantum Szilard engine without heat from a thermal reservoir , 2017, 1706.00938.

[14]  Johndale C. Solem,et al.  A quantum-mechanical treatment of Szilard's engine: Implications for the entropy of information , 1995 .

[15]  C. Jarzynski,et al.  Information Processing and the Second Law of Thermodynamics: An Inclusive Hamiltonian Approach. , 2013, 1308.5001.

[16]  Martin Plesch,et al.  Maxwell's Daemon: Information versus Particle Statistics , 2012, Scientific Reports.

[17]  Claes-Göran Granqvist,et al.  Electrical Maxwell Demon and Szilard Engine Utilizing Johnson Noise, Measurement, Logic and Control , 2012, PloS one.

[18]  Andrew F. Rex,et al.  Maxwell's Demon, Entropy, Information, Computing , 1990 .

[19]  Wojciech Hubert Zurek,et al.  Maxwell’s Demon, Szilard’s Engine and Quantum Measurements , 2003, quant-ph/0301076.

[20]  K. E.,et al.  The Theory of Heat , 1929, Nature.

[21]  R. Renner,et al.  The minimal work cost of information processing , 2012, Nature Communications.

[22]  Altug Sisman,et al.  Quantum boundary layer: a non-uniform density distribution of an ideal gas in thermodynamic equilibrium , 2007 .

[23]  Altug Sisman,et al.  Quantum forces of a gas confined in nano structures , 2013 .

[24]  Takahiro Sagawa,et al.  Heat engine driven by purely quantum information. , 2013, Physical review letters.

[25]  E. Lutz,et al.  Experimental verification of Landauer’s principle linking information and thermodynamics , 2012, Nature.

[26]  John D. Norton,et al.  All Shook Up: Fluctuations, Maxwell's Demon and the Thermodynamics of Computation , 2013, Entropy.

[27]  M. Sano,et al.  Experimental demonstration of information-to-energy conversion and validation of the generalized Jarzynski equality , 2010 .

[28]  C Y Cai,et al.  Quantum Maxwell's demon in thermodynamic cycles. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  Wojciech H. Zurek,et al.  Eliminating ensembles from equilibrium statistical physics: Maxwell’s demon, Szilard’s engine, and thermodynamics via entanglement , 2018, Physics Reports.

[30]  L. Szilard über die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter Wesen , 1929 .

[31]  Altug Sisman,et al.  Quantum shape effects and novel thermodynamic behaviors at nanoscale , 2018, Physics Letters A.

[32]  Meir Hemmo,et al.  The Road to Maxwell's Demon , 2012 .

[33]  Michal Horodecki,et al.  The second laws of quantum thermodynamics , 2013, Proceedings of the National Academy of Sciences.

[34]  Hasan Saygin,et al.  Quantum degeneracy effect on the work output from a Stirling cycle , 2001 .

[35]  Jorge Berger Szilard's demon revisited , 1990 .

[36]  Alejandro González,et al.  Magnetic Otto Engine for an Electron in a Quantum Dot: Classical and Quantum Approach , 2019, Entropy.

[37]  G. Barton Foundations of statistical mechanics , 1989 .

[38]  R. Renner,et al.  Fundamental work cost of quantum processes , 2017, 1709.00506.

[39]  Nicolai Friis,et al.  Thermodynamics of creating correlations: Limitations and optimal protocols. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  S Turgut Relations between entropies produced in nondeterministic thermodynamic processes. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  H Linke,et al.  Quantum Szilard Engine with Attractively Interacting Bosons. , 2018, Physical review letters.

[42]  C Y Cai,et al.  Multiparticle quantum Szilard engine with optimal cycles assisted by a Maxwell's demon. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[43]  Ingo Müller,et al.  The Casimir-like size effects in ideal gases , 2004 .

[44]  Hasan Saygin,et al.  Efficiency Analysis of a Stirling Power Cycle under Quantum Degeneracy Conditions , 2001 .

[45]  Franco Nori,et al.  Quantum feedback: theory, experiments, and applications , 2014, 1407.8536.

[46]  E. Lutz,et al.  Information Gain and Loss for a Quantum Maxwell's Demon. , 2018, Physical review letters.

[47]  Dmitri Petrov,et al.  Universal features in the energetics of symmetry breaking , 2013, Nature Physics.

[48]  John D. Norton,et al.  Exorcist XIV: The Wrath of Maxwell’s Demon. Part I. From Maxwell to Szilard , 1998 .

[49]  Paul Skrzypczyk,et al.  The role of quantum information in thermodynamics—a topical review , 2015, 1505.07835.

[50]  Masahito Ueda,et al.  Second law of thermodynamics with discrete quantum feedback control. , 2007, Physical review letters.

[51]  J. Koski,et al.  On-Chip Maxwell's Demon as an Information-Powered Refrigerator. , 2015, Physical review letters.

[52]  J. Koski,et al.  Experimental realization of a Szilard engine with a single electron , 2014, Proceedings of the National Academy of Sciences.

[53]  Takahiro Sagawa,et al.  Quantum Szilard engine. , 2010, Physical review letters.

[54]  Paul Skrzypczyk,et al.  Thermodynamic cost of creating correlations , 2014, 1404.2169.

[55]  Franco Nori,et al.  Quantum thermodynamic cycles and quantum heat engines. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[56]  Martin Plesch,et al.  Maxwell's Daemon: Information versus Particle Statistics , 2014, Scientific reports.

[57]  Bjarne Andresen,et al.  Quantum heat engines: Limit cycles and exceptional points. , 2018, Physical review. E.

[58]  J. Anders,et al.  Coherence and measurement in quantum thermodynamics , 2015, Scientific Reports.

[59]  S. M. Barnett,et al.  Information Erasure. , 2018, 1803.08619.

[60]  M. B. Plenio,et al.  The physics of forgetting: Landauer's erasure principle and information theory , 2001, quant-ph/0103108.

[61]  Marco Barbieri,et al.  Photonic Maxwell's Demon. , 2015, Physical review letters.

[62]  Bernhard K. Meister,et al.  Unusual quantum states: non–locality, entropy, Maxwell's demon and fractals , 2003, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[63]  Holger Kantz,et al.  Thermodynamic cost of measurements. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[64]  Kurt Jacobs,et al.  Quantum measurement and the first law of thermodynamics: the energy cost of measurement is the work value of the acquired information. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[65]  Franco Nori,et al.  Colloquium: The physics of Maxwell's demon and information , 2007, 0707.3400.

[66]  Pierre Rouchon,et al.  Observing a quantum Maxwell demon at work , 2017, Proceedings of the National Academy of Sciences.

[67]  M. Smoluchowski,et al.  Experimentell nachweisbare, der üblichen Thermodynamik widersprechende Molekularphänomene , 1927 .

[68]  M. Szilard ' s heat engine , 1999 .

[69]  Charles H. Bennett,et al.  The thermodynamics of computation—a review , 1982 .

[70]  Masahito Ueda,et al.  Minimal energy cost for thermodynamic information processing: measurement and information erasure. , 2008, Physical review letters.

[71]  Sebastian Deffner,et al.  Quantum work and the thermodynamic cost of quantum measurements. , 2016, Physical review. E.

[72]  T. Sagawa,et al.  Thermodynamics of information , 2015, Nature Physics.