Functional Analysis of Genes Involved in Cell Wall Biosynthesis of the Model Species Brachypodium distachyon to Improve Saccharification

[1]  Chung-Mo Park,et al.  Exploring valid reference genes for gene expression studies in Brachypodium distachyon by real-time PCR , 2008, BMC Plant Biology.

[2]  H. Thordal-Christensen,et al.  A high-throughput Agrobacterium-mediated transformation system for the grass model species Brachypodium distachyon L. , 2008, Transgenic Research.

[3]  Y. Barrière,et al.  Expression of cell wall related genes in basal and ear internodes of silking brown-midrib-3, caffeic acid O-methyltransferase (COMT) down-regulated, and normal maize plants , 2008, BMC Plant Biology.

[4]  M. Bevan,et al.  Agrobacterium-mediated transformation of the temperate grass Brachypodium distachyon (genotype Bd21) for T-DNA insertional mutagenesis. , 2008, Plant biotechnology journal.

[5]  J. Vogel,et al.  High-efficiency Agrobacterium-mediated transformation of Brachypodium distachyon inbred line Bd21-3 , 2008, Plant Cell Reports.

[6]  J. Vogel,et al.  Agrobacterium-mediated transformation and inbred line development in the model grass Brachypodium distachyon , 2006, Plant Cell, Tissue and Organ Culture.

[7]  Maobing Tu,et al.  Weak lignin-binding enzymes , 2005, Applied biochemistry and biotechnology.

[8]  M. Folling,et al.  A rapid and efficient transformation protocol for the grass Brachypodium distachyon , 2005, Plant Cell Reports.

[9]  Jeroen Raes,et al.  Genome-Wide Characterization of the Lignification Toolbox in Arabidopsis1[w] , 2003, Plant Physiology.

[10]  E. Kellogg,et al.  Evolutionary history of the grasses. , 2001, Plant physiology.

[11]  Chung-Jui Tsai,et al.  Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees , 1999, Nature Biotechnology.