Efficient symplectic Runge-Kutta methods

The present paper continues the research in [H.Y. Liu, G. Sun, Symplectic RK methods and symplectic PRK methods with real eigenvalues, J. Comput. Math. 22(5) (2004) 769-776] on symplectic Runge-Kutta (RK) methods with real eigenvalues. In a general setting, a new but simple proof of the main result in [H.Y. Liu, G. Sun, Symplectic RK methods and symplectic PRK methods with real eigenvalues, J. Comput. Math. 22(5) (2004) 769-776] is given that an s-stage, pth order such method must have that p=

[1]  M. J,et al.  RUNGE-KUTTA SCHEMES FOR HAMILTONIAN SYSTEMS , 2005 .

[2]  Ernst Hairer,et al.  Symplectic Runge-Kutta methods with real eigenvalues , 1994 .

[3]  J. M. Sanz-Serna,et al.  Numerical Hamiltonian Problems , 1994 .

[4]  E. Hairer,et al.  Characterization of non-linearly stable implicit Runge-Kutta methods , 1982 .

[5]  H. Yoshida Construction of higher order symplectic integrators , 1990 .

[6]  GengSun,et al.  SYMPLECTIC RK METHODS AND SYMPLECTIC PRK METHODS WITH REAL EIGENVALUES , 2004 .

[7]  E. Hairer,et al.  Geometric Numerical Integration , 2022, Oberwolfach Reports.

[8]  E. Hairer,et al.  WhenI-stability impliesA-stability , 1978 .

[9]  Robert P. K. Chan,et al.  On symmetric Runge-Kutta methods of high order , 1991, Computing.

[10]  M. Suzuki,et al.  Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations , 1990 .

[11]  Robert I. McLachlan,et al.  On the Numerical Integration of Ordinary Differential Equations by Symmetric Composition Methods , 1995, SIAM J. Sci. Comput..

[12]  Arieh Iserles EFFICIENT RUNGE–KUTTA METHODS FOR HAMILTONIAN EQUATIONS , 1993 .

[13]  J. Butcher The numerical analysis of ordinary differential equations: Runge-Kutta and general linear methods , 1987 .

[14]  E. Hairer,et al.  Solving Ordinary Differential Equations I , 1987 .

[15]  F. Lasagni Canonical Runge-Kutta methods , 1988 .

[16]  Y. Suris,et al.  The canonicity of mappings generated by Runge-Kutta type methods when integrating the systems x¨ = - 6 U/ 6 x , 1989 .

[17]  E. Hairer,et al.  Order stars and stability theorems , 1978 .