Efficient symplectic Runge-Kutta methods
暂无分享,去创建一个
Geng Sun | Hongyu Liu | R. P. K. Chan | Hongyu Liu | R. Chan | G. Sun
[1] M. J,et al. RUNGE-KUTTA SCHEMES FOR HAMILTONIAN SYSTEMS , 2005 .
[2] Ernst Hairer,et al. Symplectic Runge-Kutta methods with real eigenvalues , 1994 .
[3] J. M. Sanz-Serna,et al. Numerical Hamiltonian Problems , 1994 .
[4] E. Hairer,et al. Characterization of non-linearly stable implicit Runge-Kutta methods , 1982 .
[5] H. Yoshida. Construction of higher order symplectic integrators , 1990 .
[6] GengSun,et al. SYMPLECTIC RK METHODS AND SYMPLECTIC PRK METHODS WITH REAL EIGENVALUES , 2004 .
[7] E. Hairer,et al. Geometric Numerical Integration , 2022, Oberwolfach Reports.
[8] E. Hairer,et al. WhenI-stability impliesA-stability , 1978 .
[9] Robert P. K. Chan,et al. On symmetric Runge-Kutta methods of high order , 1991, Computing.
[10] M. Suzuki,et al. Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations , 1990 .
[11] Robert I. McLachlan,et al. On the Numerical Integration of Ordinary Differential Equations by Symmetric Composition Methods , 1995, SIAM J. Sci. Comput..
[12] Arieh Iserles. EFFICIENT RUNGE–KUTTA METHODS FOR HAMILTONIAN EQUATIONS , 1993 .
[13] J. Butcher. The numerical analysis of ordinary differential equations: Runge-Kutta and general linear methods , 1987 .
[14] E. Hairer,et al. Solving Ordinary Differential Equations I , 1987 .
[15] F. Lasagni. Canonical Runge-Kutta methods , 1988 .
[16] Y. Suris,et al. The canonicity of mappings generated by Runge-Kutta type methods when integrating the systems x¨ = - 6 U/ 6 x , 1989 .
[17] E. Hairer,et al. Order stars and stability theorems , 1978 .