Complex-tensor theory of simple smectics

[1]  Paul A. Monderkamp,et al.  Topological fine structure of smectic grain boundaries and tetratic disclination lines within three-dimensional smectic liquid crystals. , 2022, Physical chemistry chemical physics : PCCP.

[2]  J. D. de Pablo,et al.  Combining Particle-Based Simulations and Machine Learning to Understand Defect Kinetics in Thin Films of Symmetric Diblock Copolymers , 2021, Macromolecules.

[3]  Hartmut Löwen,et al.  Topology of Orientational Defects in Confined Smectic Liquid Crystals. , 2021, Physical review letters.

[4]  S. MacLachlan,et al.  Structural Landscapes in Geometrically Frustrated Smectics. , 2021, Physical review letters.

[5]  G. Boniello,et al.  Making Smectic Defect Patterns Electrically Reversible and Dynamically Tunable Using In Situ Polymer-Templated Nematic Liquid Crystals. , 2021, Macromolecular rapid communications.

[6]  S. Dvinskikh,et al.  Ion conformation and orientational order in a dicationic ionic liquid crystal studied by solid-state nuclear magnetic resonance spectroscopy , 2021, Scientific Reports.

[7]  J. Hernandez-Ortiz,et al.  Directing the far-from-equilibrium assembly of nanoparticles in confined liquid crystals by hydrodynamic fields. , 2021, Soft matter.

[8]  Randall D. Kamien,et al.  The topological origin of the Peierls–Nabarro barrier , 2021, Proceedings of the Royal Society A.

[9]  Dimitrius A. Khaladj,et al.  Submersed micropatterned structures control active nematic flow, topology, and concentration , 2021, Proceedings of the National Academy of Sciences.

[10]  C. Nisoli,et al.  Skyrmion Spin Ice in Liquid Crystals. , 2021, Physical review letters.

[11]  H. Löwen,et al.  Particle-resolved topological defects of smectic colloidal liquid crystals in extreme confinement , 2021, Nature Communications.

[12]  Pengyu Hong,et al.  Machine learning forecasting of active nematics. , 2020, Soft matter.

[13]  J. Rottler,et al.  Kinetic Pathways of Block Copolymer Directed Self-Assembly: Insights from Efficient Continuum Modeling. , 2020, ACS nano.

[14]  T. M. Otchy,et al.  Hierarchical assembly of smectic liquid crystal defects at undulated interfaces. , 2020, Soft matter.

[15]  E. Lacaze,et al.  Analogy between periodic patterns in thin smectic liquid crystal films and the intermediate state of superconductors , 2020, Proceedings of the National Academy of Sciences.

[16]  Shi-Jun Ge,et al.  Smectic Defect Engineering Enabled by Programmable Photoalignment , 2020, Advanced Optical Materials.

[17]  Paras N. Prasad,et al.  Two-dimensional MXenes: From morphological to optical, electric, and magnetic properties and applications , 2020, Physics Reports.

[18]  M. Lavrentovich,et al.  Undulation instabilities in cholesteric liquid crystals induced by anchoring transitions , 2020, Physical Review Research.

[19]  A. Newell,et al.  Computing with non-orientable defects: Nematics, smectics and natural patterns , 2020, Physica D: Nonlinear Phenomena.

[20]  E. Lacaze,et al.  From Chains to Monolayers : Nanoparticle Assembly Driven by Smectic Topological Defects. , 2020, Nano letters.

[21]  J. Mathiesen,et al.  Substrate curvature governs texture orientation in thin films of smectic block copolymers. , 2019, Soft matter.

[22]  R. Roth,et al.  Microphase separation in a two-dimensional colloidal system with competing attractive critical Casimir and repulsive magnetic dipole interactions. , 2019, Physical review. E.

[23]  P. Leo,et al.  Role of Gaussian curvature on local equilibrium and dynamics of smectic-isotropic interfaces. , 2019, Physical review. E.

[24]  Daniel A. Beller,et al.  Topological structure and dynamics of three-dimensional active nematics , 2019, Science.

[25]  A. Rucklidge,et al.  Deriving phase field crystal theory from dynamical density functional theory: Consequences of the approximations. , 2019, Physical review. E.

[26]  Ye Chan Kim,et al.  Shear-solvo defect annihilation of diblock copolymer thin films over a large area , 2019, Science Advances.

[27]  Daniel A. Beller,et al.  Topological defects and geometric memory across the nematic-smectic A liquid crystal phase transition. , 2019, Soft matter.

[28]  J. D. de Pablo,et al.  Sculpting stable structures in pure liquids , 2019, Science Advances.

[29]  U. Tkalec,et al.  Mosaics of topological defects in micropatterned liquid crystal textures , 2018, Science Advances.

[30]  Juan J de Pablo,et al.  Defect Annihilation Pathways in Directed Assembly of Lamellar Block Copolymer Thin Films. , 2018, ACS nano.

[31]  Randall D. Kamien,et al.  Aspects of Defect Topology in Smectic Liquid Crystals , 2018, Communications in Mathematical Physics.

[32]  E. Grelet,et al.  Elementary Edge and Screw Dislocations Visualized at the Lattice Periodicity Level in the Smectic Phase of Colloidal Rods. , 2018, Physical review letters.

[33]  M. M,et al.  N-SmA-SmC phase transitions probed by a pair of elastically bound colloids. , 2018, Physical review. E.

[34]  M. Tasinkevych,et al.  Chiral liquid crystal colloids. , 2017, Nature materials.

[35]  N. Clark,et al.  Two-dimensional island emulsions in ultrathin, freely-suspended smectic liquid crystal films. , 2017, Soft matter.

[36]  Daniel A. Beller,et al.  Elastocapillary Driven Assembly of Particles at Free-Standing Smectic-A Films. , 2017, Langmuir : the ACS journal of surfaces and colloids.

[37]  M. Gardel,et al.  Interplay of structure, elasticity, and dynamics in actin-based nematic materials , 2017, Proceedings of the National Academy of Sciences.

[38]  Daniel A. Beller,et al.  Morphogenesis of liquid crystal topological defects during the nematic-smectic A phase transition , 2017, Nature Communications.

[39]  M. Selmi,et al.  Structures in the meniscus of smectic membranes: the role of dislocations? , 2017, Soft matter.

[40]  Lorenzo Nicolodi,et al.  On the Landau–de Gennes Elastic Energy of a Q-Tensor Model for Soft Biaxial Nematics , 2017, J. Nonlinear Sci..

[41]  Xiaofeng Yang,et al.  Second Order, Linear, and Unconditionally Energy Stable Schemes for a Hydrodynamic Model of Smectic-A Liquid Crystals , 2017, SIAM J. Sci. Comput..

[42]  C. Hall,et al.  The Impact of Colloidal Surface-Anchoring on the Smectic A Phase. , 2017, Langmuir : the ACS journal of surfaces and colloids.

[43]  Jaya Kumar Alageshan,et al.  Elasticity of smectic liquid crystals with in-plane orientational order and dispiration asymmetry. , 2017, Physical review. E.

[44]  R. Kamien,et al.  Composite Dislocations in Smectic Liquid Crystals. , 2017, Physical review letters.

[45]  M. Ravnik,et al.  Fractal nematic colloids , 2017, Nature Communications.

[46]  F. Sagués,et al.  Taming active turbulence with patterned soft interfaces , 2016, Nature Communications.

[47]  Cheng Wang,et al.  An energy stable, hexagonal finite difference scheme for the 2D phase field crystal amplitude equations , 2016, J. Comput. Phys..

[48]  R. Roth,et al.  Gyroid phase of fluids with spherically symmetric competing interactions. , 2016, Physical review. E.

[49]  J. Lefévre,et al.  On the growth and form of cortical convolutions , 2016, Nature Physics.

[50]  Juan J de Pablo,et al.  Molecular pathways for defect annihilation in directed self-assembly , 2015, Proceedings of the National Academy of Sciences.

[51]  R. Kamien,et al.  The topology of dislocations in smectic liquid crystals , 2015, 1510.07150.

[52]  P. Charbonneau,et al.  Equilibrium Phase Behavior of a Continuous-Space Microphase Former. , 2015, Physical review letters.

[53]  D. A. Vega,et al.  Wrinkles and splay conspire to give positive disclinations negative curvature , 2015, Proceedings of the National Academy of Sciences.

[54]  Daniel A. Beller,et al.  Synergistic assembly of nanoparticles in smectic liquid crystals. , 2015, Soft matter.

[55]  A. Khokhlov,et al.  Simple theory of transitions between smectic, nematic, and isotropic phases. , 2015, The Journal of chemical physics.

[56]  J. Yeomans,et al.  Multi-particle collision dynamics algorithm for nematic fluids. , 2015, Soft matter.

[57]  D. A. Vega,et al.  Smectic block copolymer thin films on corrugated substrates. , 2015, Soft matter.

[58]  Matthew Bierbaum,et al.  Visualization, coarsening, and flow dynamics of focal conic domains in simulated smectic-A liquid crystals. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[59]  J. Ball,et al.  Discontinuous Order Parameters in Liquid Crystal Theories , 2014, 1411.3264.

[60]  A. Majumdar,et al.  Order reconstruction patterns in nematic liquid crystal wells , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[61]  A. Pisante,et al.  Uniaxial versus Biaxial Character of Nematic Equilibria in Three Dimensions , 2013, 1312.3358.

[62]  P. Mukherjee Isotropic micellar to lamellar phase transition in lyotropic liquid crystals , 2013 .

[63]  C. Horowitz,et al.  Nuclear “pasta” formation , 2013, 1307.1678.

[64]  Jonathan V Selinger,et al.  Modeling smectic layers in confined geometries: order parameter and defects. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[65]  Edgar Knobloch,et al.  Localized states in the conserved Swift-Hohenberg equation with cubic nonlinearity. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[66]  S. Schnell,et al.  Hedgehog-responsive mesenchymal clusters direct patterning and emergence of intestinal villi , 2012, Proceedings of the National Academy of Sciences.

[67]  E. Knobloch,et al.  Modeling the structure of liquids and crystals using one- and two-component modified phase-field crystal models. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[68]  C. Santangelo,et al.  Developed smectics: when exact solutions agree. , 2011, Physical review letters.

[69]  Elisabetta A. Matsumoto,et al.  The Power of Poincar\'e: Elucidating the Hidden Symmetries in Focal Conic Domains , 2011 .

[70]  G. Gonnella,et al.  Thermal and hydrodynamic effects in the ordering of lamellar fluids , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[71]  N. Clark,et al.  Liquid-crystal periodic zigzags from geometrical and surface-anchoring-induced confinement: origin and internal structure from mesoscopic scale to molecular level. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[72]  Apala Majumdar,et al.  Nematic Liquid Crystals: From Maier-Saupe to a Continuum Theory , 2010 .

[73]  Elisabetta A. Matsumoto,et al.  Power of the Poincaré group: elucidating the hidden symmetries in focal conic domains. , 2010, Physical review letters.

[74]  I. Smalyukh,et al.  Colloidal gold nanosphere dispersions in smectic liquid crystals and thin nanoparticle-decorated smectic films , 2010 .

[75]  Miha Ravnik,et al.  Landau–de Gennes modelling of nematic liquid crystal colloids , 2009 .

[76]  R. Kamien,et al.  Symmetry breaking in smectics and surface models of their singularities , 2009, Proceedings of the National Academy of Sciences.

[77]  L. Navailles,et al.  Twisted smectics as the liquid crystal analogues of type II superconductors , 2009 .

[78]  R. Stannarius,et al.  Corona patterns around inclusions in freely suspended smectic films , 2009, The European physical journal. E, Soft matter.

[79]  L. Reatto,et al.  Theory for the phase behaviour of a colloidal fluid with competing interactions , 2008, 0808.4036.

[80]  P. Mukherjee,et al.  Tricritical behavior of the smectic-A to smectic-C phase transition in a liquid crystal mixture. , 2008, The Journal of chemical physics.

[81]  Nasser Mohieddin Abukhdeir,et al.  Defect kinetics and dynamics of pattern coarsening in a two-dimensional smectic-A system , 2008, 0805.3651.

[82]  S. Komura,et al.  The dynamics of order–order phase separation , 2008 .

[83]  C. Santangelo,et al.  Smectic Liquid Crystals: Materials with One-dimensional, Periodic Order , 2006, math/0601494.

[84]  C. Santangelo,et al.  Curvature and topology in smectic-A liquid crystals , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[85]  A. Xu,et al.  Morphologies and flow patterns in quenching of lamellar systems with shear. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[86]  Aiguo Xu,et al.  Numerical study of the ordering properties of lamellar phase , 2004 .

[87]  F. Massaioli,et al.  Scaling and hydrodynamic effects in lamellar ordering , 2004, cond-mat/0404205.

[88]  D. A. Vega,et al.  Dynamics of pattern coarsening in a two-dimensional smectic system. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[89]  G. Gonnella,et al.  Ordering of the lamellar phase under a shear flow. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[90]  D. Boyer,et al.  Grain boundary pinning and glassy dynamics in stripe phases. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[91]  Holger Stark,et al.  Physics of colloidal dispersions in nematic liquid crystals , 2001 .

[92]  P. Mukherjee,et al.  Simple Landau model of the smectic- A-isotropic phase transition , 2001 .

[93]  P. Poulin,et al.  Interactions between colloidal inclusions in two-dimensional smectic-C* films. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[94]  D. Huse,et al.  Mechanisms of ordering in striped patterns. , 2000, Science.

[95]  J. Heath,et al.  Spontaneous patterning of quantum dots at the air-water interface. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[96]  I. Luk’yanchuk Phase transition between the cholesteric and twist grain boundary C phases , 1997, cond-mat/9711024.

[97]  E. Weinan,et al.  Nonlinear Continuum Theory¶of Smectic-A Liquid Crystals , 1997 .

[98]  M. Muthukumar,et al.  Annihilation kinetics of liquid crystal defects , 1997 .

[99]  N. Goldenfeld,et al.  Dynamical scaling behavior of the Swift-Hohenberg equation following a quench to the modulated state , 1997, patt-sol/9808001.

[100]  Dewel,et al.  Pattern selection in the generalized Swift-Hohenberg model. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[101]  Sullivan,et al.  Phenomenological theory of smectic-A liquid crystals. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[102]  Lubensky,et al.  Abrikosov dislocation lattice in a model of the cholesteric-to-smectic-A transition. , 1988, Physical review. A, General physics.

[103]  T. Lubensky,et al.  Landau-Ginzburg mean-field theory for the nematic to smectic-C and nematic to smectic-A phase transitions , 1976 .

[104]  P. D. Gennes,et al.  An analogy between superconductors and smectics A , 1972 .

[105]  W. L. Mcmillan,et al.  Simple Molecular Model for the Smectic A Phase of Liquid Crystals , 1971 .

[106]  P. G. de Gennes,et al.  Short Range Order Effects in the Isotropic Phase of Nematics and Cholesterics , 1971 .

[107]  W. Marsden I and J , 2012 .

[108]  J. Herskowitz,et al.  Proceedings of the National Academy of Sciences, USA , 1996, Current Biology.