The effect of grain size on the corrosion inhibitor adsorption of nanocrystalline iron metal
暂无分享,去创建一个
[1] K. Mohana,et al. Effect of sodium nitrite–borax blend on the corrosion rate of low carbon steel in industrial water medium , 2008 .
[2] H. Vehoff,et al. The deformation behaviour of electrodeposited nanocrystalline Ni in an atomic force microscope with a newly developed in situ bending machine , 2006 .
[3] N. Schell,et al. An approach to cyclic plasticity and deformation-induced structure changes of electrodeposited nickel , 2005 .
[4] V. Stolyarov,et al. Corrosion resistance of ultra fine-grained Ti , 2004 .
[5] Yuhan Sun,et al. Preparation and Catalytic Performance of Mesostructured Aluminosilicate Nano-particles with Wormhole-Like Framework Structure , 2004 .
[6] Francesca Guidi,et al. Tryptamine as a green iron corrosion inhibitor in 0.5 M deaerated sulphuric acid , 2004 .
[7] P. Bowen,et al. From powders to sintered pieces: forming, transformations and sintering of nanostructured ceramic oxides , 2002 .
[8] P. Goeuriot,et al. Solid state sintering and high temperature compression properties of Al-alloy5000/AlN nanocomposites , 2001 .
[9] P. Ross,et al. Reversible Li Deposition on Ni in Ultrahigh Vacuum , 1995 .
[10] C. Schiller,et al. Impedance studies of the oxide layer on zircaloy after previous oxidation in water vapour at 400°C , 1993 .
[11] G. Palumbo,et al. The corrosion behaviour of nanocrystalline nickel , 1991 .
[12] K. Niihara. New Design Concept of Structural Ceramics , 1991 .
[13] D. Geanǎ,et al. A theoretical treatment of the kinetics of iron dissolution and passivation , 1975 .
[14] G. Bech-Nielsen. The anodic dissolution of iron—V. Some observations regarding the influence of cold working and of annealing on the two anodic reactions of the metal , 1974 .
[15] W. J. Lorenz,et al. Einfluß des Metallsubgefüges auf den anodischen Auflösungsmechanismus von Eisen , 1974 .
[16] Y. Miyoshi,et al. Correlations between the Kinetics of Electrolytic Dissolution and Deposition of Iron II . The Cathodic Deposition of Iron , 1971 .
[17] R. E. Patterson,et al. Electrochemical Characteristics of Iron During Corrosion: Effect of Heat Treatment and Purity , 1970 .
[18] W. J. Lorenz,et al. Einfluß der oberflächenaktivität auf die anodischen auflösungsmechanismen von eisen in sauren lösungen , 1968 .
[19] U. Ebersbach,et al. On the kinetics of the anodic passivation of iron, cobalt and nickel , 1967 .
[20] J. O'm. Bockris,et al. The electrode kinetics of the deposition and dissolution of iron , 1961 .
[21] N. Hackerman,et al. Iron corrosion inhibition with dihydrobis‐ and hydrotris‐(1‐pyrazolyl)borates , 2006 .
[22] W. J. Lorenz,et al. Über den Zusammenhang zwischen Metall-Subgefüge und dem anodischen Auflösungsmechanismus des Eisens in sauren Lösungen , 2004, Naturwissenschaften.
[23] A. Popova,et al. AC and DC study of the temperature effect on mild steel corrosion in acid media in the presence of benzimidazole derivatives , 2003 .
[24] V. Katalinić,et al. Aqueous extract of Rosmarinus officinalis L. as inhibitor of Al–Mg alloy corrosion in chloride solution , 2000 .
[25] H. Gleiter,et al. Nanostructured materials: basic concepts and microstructure☆ , 2000 .
[26] N. McIntyre,et al. XPS characterization of the passive films formed on nanocrystalline nickel in sulphuric acid , 1994 .
[27] Don M. Parkin,et al. Mechanical Properties and Deformation Behavior of Materials Having Ultra-Fine Microstructures , 1993 .
[28] H. Bala. The corrosion of iron in sulphate solutions at pH = 0–2 , 1984 .
[29] A. Anderson,et al. Mechanism of Iron dissolution and passivation in an aqueous environment: Active and transition ranges , 1983 .
[30] G H Ettinger,et al. Queen's University. , 1962, Canadian Medical Association journal.