Vibroacoustic optimization of anti-tetrachiral and auxetic hexagonal sandwich panels with gradient geometry

The work describes the vibroacoustic behavior of anti-tetrachiral and auxetic hexagonal gradient sandwich panels using homogenized finite element models to determine the mechanical properties of the auxetic structures, the natural frequencies and radiated sound power level of sandwich panels made by the auxetic cores. The mechanical properties and the vibroacoustic behavior of auxetic hexagonal sandwich panels are investigated as a benchmark. The radiated sound power level of the structure over the frequency range of 0–1000 Hz is minimized by modifying the core geometry of the gradient auxetic sandwich panels. Several excitation cases are considered. First-order and random optimization methods are used for the minimization of radiated sound power level of the structures. The results of this study present significant insights into the design of auxetic structures with respect to their vibroacoustical properties.

[1]  F. Scarpa,et al.  A Gradient Cellular Core for Aeroengine Fan Blades Based on Auxetic Configurations , 2011 .

[2]  Alessandro Airoldi,et al.  Chiral topologies for composite morphing structures – Part I: Development of a chiral rib for deformable airfoils , 2015 .

[3]  Massimo Ruzzene,et al.  The hexachiral prismatic wingbox concept , 2008 .

[4]  K. Evans,et al.  Models for the elastic deformation of honeycombs , 1996 .

[5]  Fabrizio Scarpa,et al.  Theoretical characteristics of the vibration of sandwich plates with in-plane negative poisson's ratio values , 2000 .

[6]  Kenneth E. Evans,et al.  The design of doubly curved sandwich panels with honeycomb cores , 1991 .

[7]  R. Lakes,et al.  Properties of a chiral honeycomb with a poisson's ratio of — 1 , 1997 .

[8]  Steffen Marburg,et al.  Estimation of Radiated Sound Power: A Case Study on Common Approximation Methods , 2009 .

[9]  Massimo Ruzzene,et al.  Wave Propagation in Sandwich Plates with Periodic Auxetic Core , 2002 .

[10]  Fabrizio Scarpa,et al.  A novel centresymmetric honeycomb composite structure , 2005 .

[11]  K. Evans,et al.  Auxetic Materials : Functional Materials and Structures from Lateral Thinking! , 2000 .

[12]  Ruben Gatt,et al.  Elastic constants of 3-, 4- and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading , 2010 .

[13]  T N Bitzer,et al.  Honeycomb Technology: Materials, Design, Manufacturing, Applications and Testing , 1997 .

[14]  F. Scarpa,et al.  Vibro-acoustic properties of auxetic open Cell foam: Model and experimental results , 2010 .

[15]  Steffen Marburg,et al.  FINDING THE BEST DESIGN WITHIN LIMITED TIME: A COMPARATIVE CASE STUDY ON METHODS FOR OPTIMIZATION IN STRUCTURAL ACOUSTICS , 2010 .

[16]  Kenneth E. Evans,et al.  Auxetic materials: the positive side of being negative , 2000 .

[17]  S. Marburg Developments in structural-acoustic optimization for passive noise control , 2002 .

[18]  Maurice Petyt,et al.  Introduction to finite element vibration analysis , 1990 .

[19]  F. Scarpa,et al.  The transverse elastic properties of chiral honeycombs , 2010 .

[20]  Franz Gustav Kollmann Maschinenakustik: Grundlagen, Meßtechnik, Berechnung, Beeinflussung , 1993 .

[21]  Hua Hongxing,et al.  A study on the isolation performance of trichiral lattices with gradient geometry , 2015 .

[22]  Jinsong Leng,et al.  Elasticity of anti-tetrachiral anisotropic lattices , 2013 .

[23]  T. Lim Auxetic Materials and Structures , 2014 .

[24]  J. Béliveau Introduction to finite element vibration analysis , 1992 .

[25]  F. Scarpa,et al.  A nonlinear auxetic structural vibration damper with metal rubber particles , 2013 .

[26]  Teik-Cheng Lim,et al.  Functionally graded beam for attaining Poisson-curving , 2002 .

[27]  Steffen Marburg,et al.  Structural-acoustic optimization of a rectangular plate: A tabu search approach , 2012 .

[28]  T. Lim Buckling and Vibration of Circular Auxetic Plates , 2014 .

[29]  Massimo Ruzzene,et al.  Identification of acoustic properties of auxetic foams , 2003, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[30]  Andrew Alderson,et al.  The in-plane linear elastic constants and out-of-plane bending of 3-coordinated ligament and cylinder-ligament honeycombs , 2010 .

[31]  M. Ashby,et al.  Cellular solids: Structure & properties , 1988 .

[32]  R. Lakes Foam Structures with a Negative Poisson's Ratio , 1987, Science.

[33]  Massimo Ruzzene,et al.  Elastic buckling of hexagonal chiral cell honeycombs , 2007 .

[34]  M. Ruzzene,et al.  Composite chiral structures for morphing airfoils: Numerical analyses and development of a manufacturing process , 2010 .

[35]  B. Gu,et al.  The bending and failure of sandwich structures with auxetic gradient cellular cores , 2013 .

[36]  Thermoelastic damping in an auxetic rectangular plate with thermal relaxation—free vibrations , 2013 .

[37]  Massimo Ruzzene,et al.  Global and local linear buckling behavior of a chiral cellular structure , 2005 .