Some local maximum principles along Ricci flows

Abstract In this work, we obtain a local maximum principle along the Ricci flow $g(t)$ under the condition that $\mathrm {Ric}(g(t))\le {\alpha } t^{-1}$ for $t>0$ for some constant ${\alpha }>0$ . As an application, we will prove that under this condition, various kinds of curvatures will still be nonnegative for $t>0$ , provided they are non-negative initially. These extend the corresponding known results for Ricci flows on compact manifolds or on complete noncompact manifolds with bounded curvature. By combining the above maximum principle with the Dirichlet heat kernel estimates, we also give a more direct proof of Hochard’s [15] localized version of a maximum principle by Bamler et al. [1] on the lower bound of different kinds of curvatures along the Ricci flows for $t>0$ .

[1]  J. Lott Comparison geometry of holomorphic bisectional curvature for Kähler manifolds and limit spaces , 2020, Duke Mathematical Journal.

[2]  Man-Chun Lee,et al.  Kähler manifolds with almost nonnegative curvature , 2019, Geometry & Topology.

[3]  P. Topping,et al.  Pyramid Ricci flow in higher dimensions , 2019, Mathematische Zeitschrift.

[4]  Lei Ni,et al.  Kähler-Ricci shrinkers and ancient solutions with nonnegative orthogonal bisectional curvature , 2019, Journal de Mathématiques Pures et Appliquées.

[5]  Raphaël Hochard Théorèmes d’existence en temps court du flot de Ricci pour des variétés non-complètes, non-éffondrées, à courbure minorée. , 2019 .

[6]  Y. Lai Ricci flow under local almost non-negative curvature conditions , 2018, Advances in Mathematics.

[7]  P. Topping,et al.  Global Regularity of Three-Dimensional Ricci Limit Spaces , 2018, 1803.00414.

[8]  Man-Chun Lee,et al.  Chern–Ricci flows on noncompact complex manifolds , 2017, 1708.00141.

[9]  Burkhard Wilking,et al.  The Ricci flow under almost non-negative curvature conditions , 2017, Inventiones mathematicae.

[10]  P. Topping,et al.  Local mollification of Riemannian metrics using Ricci flow, and Ricci limit spaces , 2017, Geometry & Topology.

[11]  Man-Chun Lee,et al.  On existence and curvature estimates of Ricci flow , 2017, 1702.02667.

[12]  P. Topping,et al.  Local control on the geometry in 3D Ricci flow , 2016, Journal of Differential Geometry.

[13]  Fei He Existence and applications of Ricci flows via pseudolocality , 2016, 1610.01735.

[14]  Raphael Hochard Short-time existence of the Ricci flow on complete, non-collapsed $3$-manifolds with Ricci curvature bounded from below , 2016, 1603.08726.

[15]  Shaochuang Huang,et al.  Kähler-Ricci flow with unbounded curvature , 2015, 1506.00322.

[16]  Gang Liu Gromov‐Hausdorff Limits of Kähler Manifolds with Bisectional Curvature Lower Bound , 2015, 1505.07521.

[17]  Burkhard Wilking,et al.  How to produce a Ricci Flow via Cheeger-Gromoll exhaustion , 2011, 1107.0606.

[18]  Burkhard Wilking A Lie algebraic approach to Ricci flow invariant curvature conditions and Harnack inequalities , 2010, 1011.3561.

[19]  P. Topping,et al.  Existence of Ricci Flows of Incomplete Surfaces , 2010, 1007.3146.

[20]  B. Chow,et al.  The Ricci Flow: Techniques and Applications: Part III: Geometric-Analytic Aspects , 2010 .

[21]  Guoyi Xu Short-time existence of the Ricci flow on noncompact Riemannian manifolds , 2009, 0907.5604.

[22]  P. Baird The Ricci flow: techniques and applications -Part I: Geometric aspects (Mathematical Surveys and Monographs 135) , 2008 .

[23]  Peng Lu,et al.  The Ricci Flow: Techniques and Applications , 2007 .

[24]  Bing-Long Chen,et al.  Strong Uniqueness of the Ricci Flow , 2007, 0706.3081.

[25]  Luen-Fai Tam,et al.  Pseudolocality for the Ricci Flow and Applications , 2007, Canadian Journal of Mathematics.

[26]  G. Perelman The entropy formula for the Ricci flow and its geometric applications , 2002, math/0211159.

[27]  Christine Guenther,et al.  The fundamental solution on manifolds with time-dependent metrics , 2002 .

[28]  Man-Chun Lee,et al.  The Kähler–Ricci flow around complete bounded curvature Kähler metrics , 2020 .

[29]  M. Simon,et al.  Deformation of $C^0$ Riemannian metrics in the direction of their Ricci curvature , 2002 .

[30]  Alexander Grigor cprimeyan Gaussian upper bounds for the heat kernel on arbitrary manifolds , 1997 .

[31]  Wan-Xiong Shi Ricci flow and the uniformization on complete noncompact Kähler manifolds , 1997 .

[32]  Wan-Xiong Shi Deforming the metric on complete Riemannian manifolds , 1989 .