Novel Pb(Ti, Zr)O3(PZT) Crystallization Technique Using Flash Lamp for Ferroelectric RAM (FeRAM) Embedded LSIs and One Transistor Type FeRAM Devices

A novel method of ferroelectric capacitor formation for Ferroelectrie random access memory (FeRAM) embedded LSIs and one-transistor-type FeRAMs has been developed. Amorphous Pb(Ti, Zr)O3(PZT) films were successfully transformed to the perovskite phase by a flash lamp technique with a crystallization time of 1.2 ms at a substrate temperature of 350°C. A flash lamp energy of 27 J/cm2 was sufficient to form a ferroelectric crystal structure due to rapid thermal effects with little heat diffusion in the depth direction. This technique enabled PZT film crystallization in Pt/PZT/Pt structures on multi-Al wiring layers. Granular PZT grains were observed on Pt, Ru and RuO2 electrodes, which indicates that crystal growth begins from the film surfaces. Ferroelectric property was verified by the process at 350°C maximum temperature. PZT films were also crystallized directly on SiO2. This is useful for the fabrication of embedded FeRAM devices and 1Tr-type FeRAMs. The flash lamp process was found to have great potential for application to dielectric film formation, annealing processes and so on.