Successive action of DnaK, DnaJ and GroEL along the pathway of chaperone-mediated protein folding

[1]  J. Sambrook,et al.  Protein folding in the cell , 1992, Nature.

[2]  F. Hartl,et al.  A molecular chaperone from a thermophilic archaebacterium is related to the eukaryotic protein t-complex polypeptide-1 , 1991, Nature.

[3]  G. North A cytoplasmic chaperonin? , 1991, Nature.

[4]  G. Schatz,et al.  Sequential action of mitochondrial chaperones in protein import into the matrix. , 1991, The EMBO journal.

[5]  J. Rothman,et al.  Peptide-binding specificity of the molecular chaperone BiP , 1991, Nature.

[6]  J. Holbrook,et al.  Binding of a chaperonin to the folding intermediates of lactate dehydrogenase. , 1991, Biochemistry.

[7]  J. Hoskins,et al.  Monomerization of RepA dimers by heat shock proteins activates binding to DNA replication origin. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[8]  K. Arndt,et al.  Characterization of SIS1, a Saccharomyces cerevisiae homologue of bacterial dnaJ proteins , 1991, The Journal of cell biology.

[9]  A. Caplan,et al.  Characterization of YDJ1: a yeast homologue of the bacterial dnaJ protein , 1991, The Journal of cell biology.

[10]  L. Gierasch,et al.  The chaperonin GroEL binds a polypeptide in an alpha-helical conformation. , 1991, Biochemistry.

[11]  G. Lorimer,et al.  Chaperonins facilitate the in vitro folding of monomeric mitochondrial rhodanese. , 1991, The Journal of biological chemistry.

[12]  T. Creighton Unfolding protein folding , 1991, Nature.

[13]  F. Hartl,et al.  Chaperonin-mediated protein folding at the surface of groEL through a 'molten globule'-like intermediate , 1991, Nature.

[14]  A. Fink,et al.  Interaction of hsp70 with unfolded proteins: effects of temperature and nucleotides on the kinetics of binding. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[15]  T. Creighton,et al.  The molten globule protein conformation probed by disulphide bonds , 1991, Nature.

[16]  R. Jaenicke,et al.  Protein folding: local structures, domains, subunits, and assemblies. , 1991, Biochemistry.

[17]  C. Georgopoulos,et al.  Escherichia coli DnaJ and GrpE heat shock proteins jointly stimulate ATPase activity of DnaK. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[18]  J. Hoskins,et al.  Function of DnaJ and DnaK as chaperones in origin-specific DNA binding by RepA , 1991, Nature.

[19]  P. Silver,et al.  A homologue of the bacterial heat-shock gene DnaJ that alters protein sorting in yeast , 1991, Nature.

[20]  R. Jaenicke,et al.  GroE facilitates refolding of citrate synthase by suppressing aggregation. , 1991, Biochemistry.

[21]  C. Gross,et al.  Is hsp70 the cellular thermometer? , 1991, Trends in biochemical sciences.

[22]  D. Vestweber,et al.  A precursor protein partly translocated into yeast mitochondria is bound to a 70 kd mitochondrial stress protein. , 1990, The EMBO journal.

[23]  B. Bukau,et al.  Mutations altering heat shock specific subunit of RNA polymerase suppress major cellular defects of E. coli mutants lacking the DnaK chaperone. , 1990, The EMBO journal.

[24]  F. Hartl,et al.  Polypeptides traverse the mitochondrial envelope in an extended state , 1990, FEBS letters.

[25]  R. Ellis Molecular Chaperones: The Plant Connection , 1990, Science.

[26]  Elizabeth A. Craig,et al.  Requirement for hsp70 in the mitochondrial matrix for translocation and folding of precursor proteins , 1990, Nature.

[27]  C. Georgopoulos,et al.  The E. coli dnaK gene product, the hsp70 homolog, can reactivate heat-inactivated RNA polymerase in an ATP hydrolysis-dependent manner , 1990, Cell.

[28]  H. Echols Nucleoprotein structures initiating DNA replication, transcription, and site-specific recombination. , 1990, The Journal of biological chemistry.

[29]  C. Georgopoulos,et al.  Isolation and characterization of dnaJ null mutants of Escherichia coli , 1990, Journal of bacteriology.

[30]  G. Shore,et al.  Mitochondrial precursor protein. Effects of 70-kilodalton heat shock protein on polypeptide folding, aggregation, and import competence. , 1990, The Journal of biological chemistry.

[31]  A. Plückthun,et al.  The Escherichia coli heat shock proteins GroEL and GroES modulate the folding of the beta‐lactamase precursor. , 1990, The EMBO journal.

[32]  A. Papavassiliou,et al.  Renaturation of denatured λ repressor requires heat shock proteins , 1990, Cell.

[33]  W. Welch,et al.  Interaction of Hsp 70 with newly synthesized proteins: implications for protein folding and assembly. , 1990, Science.

[34]  T. Silhavy,et al.  Heat-shock proteins DnaK and GroEL facilitate export of LacZ hybrid proteins in E. coli , 1990, Nature.

[35]  P. Horowitz,et al.  The detection of kinetic intermediate(s) during refolding of rhodanese. , 1990, The Journal of biological chemistry.

[36]  O. Ptitsyn,et al.  Evidence for a molten globule state as a general intermediate in protein folding , 1990, FEBS letters.

[37]  F. Schmid,et al.  The mechanism of protein folding. Implications of in vitro refolding models for de novo protein folding and translocation in the cell. , 1990, Biochemistry.

[38]  R. Morimoto,et al.  Stress proteins in biology and medicine , 1991 .

[39]  G. Lorimer,et al.  Reconstitution of active dimeric ribulose bisphosphate carboxylase from an unfolded state depends on two chaperonin proteins and Mg-ATP , 1989, Nature.

[40]  P. Silver,et al.  A yeast gene important for protein assembly into the endoplasmic reticulum and the nucleus has homology to DnaJ, an Escherichia coli heat shock protein , 1989, The Journal of cell biology.

[41]  J. Rothman Polypeptide chain binding proteins: Catalysts of protein folding and related processes in cells , 1989, Cell.

[42]  F. Hartl,et al.  Protein folding in mitochondria requires complex formation with hsp60 and ATP hydrolysis , 1989, Nature.

[43]  P. Horowitz,et al.  Reversible folding of rhodanese. Presence of intermediate(s) at equilibrium. , 1989, The Journal of biological chemistry.

[44]  C. Georgopoulos,et al.  The heat-shock-regulated grpE gene of Escherichia coli is required for bacterial growth at all temperatures but is dispensable in certain mutant backgrounds , 1989, Journal of bacteriology.

[45]  A. Myers,et al.  Characterization of the yeast HSP60 gene coding for a mitochondrial assembly factor , 1989, Nature.

[46]  F. Hartl,et al.  Mitochondrial heat-shock protein hsp60 is essential for assembly of proteins imported into yeast mitochondria , 1989, Nature.

[47]  G. Lorimer,et al.  GroE heat-shock proteins promote assembly of foreign prokaryotic ribulose bisphosphate carboxylase oligomers in Escherichia coli , 1989, Nature.

[48]  A. Helenius,et al.  Protein oligomerization in the endoplasmic reticulum. , 1989, Annual review of cell biology.

[49]  N. Lissin,et al.  Transient association of newly synthesized unfolded proteins with the heat-shock GroEL protein , 1988, Nature.

[50]  H. Pelham,et al.  Seventy‐kilodalton heat shock proteins and an additional component from reticulocyte lysate stimulate import of M13 procoat protein into microsomes. , 1988, The EMBO journal.

[51]  Roger W. Hendrix,et al.  Homologous plant and bacterial proteins chaperone oligomeric protein assembly , 1988, Nature.

[52]  G. Blobel,et al.  70K heat shock related proteins stimulate protein translocation into microsomes , 1988, Nature.

[53]  Elizabeth A. Craig,et al.  A subfamily of stress proteins facilitates translocation of secretory and mitochondrial precursor polypeptides , 1988, Nature.

[54]  Hugh Pelham,et al.  Coming in from the cold , 2006, Nature.

[55]  E. Craig,et al.  SSC1, a member of the 70-kDa heat shock protein multigene family of Saccharomyces cerevisiae, is essential for growth. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[56]  R. Ellis,et al.  Dissociation of the ribulosebisphosphate-carboxylase large-subunit binding protein into dissimilar subunits. , 1987, European journal of biochemistry.

[57]  J. Ellis Proteins as molecular chaperones , 1987, Nature.

[58]  P. Horowitz,et al.  Detergent-assisted refolding of guanidinium chloride-denatured rhodanese. The effect of lauryl maltoside. , 1986, The Journal of biological chemistry.

[59]  A. Goldberg,et al.  Selectivity of intracellular proteolysis: protein substrates activate the ATP-dependent protease (La). , 1986, Science.

[60]  J. King,et al.  The nucleotide sequence of the Escherichia coli K12 dnaJ+ gene. A gene that encodes a heat shock protein. , 1986, The Journal of biological chemistry.

[61]  W. Welch,et al.  Rapid purification of mammalian 70,000-dalton stress proteins: affinity of the proteins for nucleotides. , 1985, Molecular and cellular biology.

[62]  R. Ellis,et al.  Protein synthesis in chloroplasts. IX. Assembly of newly-synthesized large subunits into ribulose bisphosphate carboxylase in isolated intact pea chloroplasts. , 1980, Biochimica et biophysica acta.

[63]  W. Hol,et al.  The covalent and tertiary structure of bovine liver rhodanese , 1978, Nature.

[64]  M. M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. , 1976, Analytical biochemistry.

[65]  C. Anfinsen Principles that govern the folding of protein chains. , 1973, Science.